Ген и генетический код – биология

Блок 2. Клетка как биологическая система. Раздел 2.6

2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот.

Термины и понятия, проверяемые в экзаменационной работе: антикодон, биосинтез, ген, генетическая информация, генетический код, кодон, матричный синтез, полисома, транскрипция, трансляция.

Гены, генетический код и его свойства. На Земле живет уже более 6 млрд людей. Если не считать 25–30 млн пар однояйцовых близнецов, то генетически все люди разные. Это означает, что каждый из них уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом и многими другими качествами.

Чем же определяются такие различия между людьми? Конечно различиями в их генотипах, т. е. наборах генов данного организма. У каждого человека он уникален, так же как уникален генотип отдельного животного или растения. Но генетические признаки данного человека воплощаются в белках, синтезированных в его организме.

Следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека. Вот почему возникает проблема пересадки органов, вот почему возникают аллергические реакции на продукты, укусы насекомых, пыльцу растений и т. д. Сказанное не означает, что у людей не встречается совершенно одинаковых белков.

Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга.

Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы/
Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене. Ген – это единица наследственной информации организма. Каждая молекула ДНК содержит множество генов.

Совокупность всех генов организма составляет его генотип.
 Кодирование наследственной информации происходит с помощью генетического кода. Код подобен всем известной азбуке Морзе, которая точками и тире кодирует информацию. Азбука Морзе универсальна для всех радистов, и различия состоят только в переводе сигналов на разные языки.

Генетический код также универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов. Итак, что же собой представляет генетический код? Изначально он состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности. Например, ААТ, ГЦА, АЦГ, ТГЦ и т. д.

Каждый триплет нуклеотидов кодирует определенную аминокислоту, которая будет встроена в полипептидную цепь. Так, например, триплет ЦГТ кодирует аминокислоту аланин, а триплет ААГ – аминокислоту фенилаланин. Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64.

Следовательно, четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот. Вот почему одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, ибо она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции). В состав и РНК входят нуклеотиды АЦГУ. Триплеты нуклеотидов и-РНК называются кодонами.

Уже приведенные примеры триплетов ДНК на и-РНК будут выглядеть следующим образом – триплет ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК – ААГ – станет триплетом УУЦ. Именно кодонами и-РНК отражается генетический код в записи. Итак, генетический код триплетен, универсален для всех организмов на земле, вырожден (каждая аминокислота шифруется более чем одним кодоном).

Между генами имеются знаки препинания – это триплеты, которые называются стоп-кодонами. Они сигнализируют об окончании синтеза одной полипептидной цепи. Существуют таблицы генетического кода, которыми нужно уметь пользоваться, для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

– это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. Генетическая информация, снятая с ДНК и переведенная в код молекулы и-РНК, должна реализоваться, т. е. проявиться в признаках конкретного организма.

Эти признаки определяются белками. Биосинтез белков происходит на рибосомах в цитоплазме. Именно туда поступает информационная РНК из ядра клетки. Если синтез и-РНК на молекуле ДНК называется транскрипцией, то синтез белка на рибосомах называется трансляцией – переводом языка генетического кода на язык последовательности аминокислот в белковой молекуле. Аминокислоты доставляются к рибосомам транспортными РНК. Эти РНК имеют форму клеверного листа. На конце молекулы есть площадка для прикрепления аминокислоты, а на вершине – триплет нуклеотидов, комплементарный определенному триплету – кодону на и-РНК. Этот триплет называется антикодоном. Ведь он расшифровывает код и-РНК. В клетке т-РНК всегда столько же, сколько кодонов, шифрующих аминокислоты. 

Рибосома движется вдоль и-РНК, смещаясь при подходе новой аминокислоты на три нуклеотида, освобождая их для нового антикодона.

Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной аминокислоты оказывается рядом с аминогруппой другой аминокислоты.

В результате между ними образуется пептидная связь. Постепенно формируется молекула полипептида. 

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трех стоп-кодонов – УАА, УАГ, или УГА.

После этого полипептид покидает рибосому и направляется в цитоплазму. На одной молекуле и-РНК находятся несколько рибосом, образующих полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых полипептидных цепей.
 Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Реакции матричного синтеза . К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию), и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.

Репликация ДНК . Структура молекулы ДНК, установленная Дж. Уотсоном и Ф. Криком в 1953 г., отвечала тем требованиям, которые предъявлялись к молекуле-хранительнице и передатчику наследственной информации. Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина. Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка. Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии.

Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

Репликация – это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток. 

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток. 

Транскрипция – это процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК. Информационная РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности. Как и в любой другой биохимической реакции в этом синтезе участвует фермент.

Он активирует начало и конец синтеза молекулы и-РНК. Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

Процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде называется трансляцией.

Источник:  Г.И. Лернер. Биология. Полный справочник для подготовки к ЕГЭ

Источник: http://karpt.blogspot.com/2012/08/2-26.html

Генетический код, его свойства

Химический состав и структурная организация молекулы днк.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин – А, тимин – Т, гуанин – Г или цитозин – Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц.

Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК.

Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды.

Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г).

Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин – тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток – в два раза меньше – 3,3 х 10-12 г.

Молекулы нуклеиновых кислот – ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК – хранение наследственной информации.

Свойства и функции днк.

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода.

С молекулами ДНК связаны два основополагающих свойства живых организмов — наследственность и изменчивость.

В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуется при экспрессии генов в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).

Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна.

Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых — сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков — в активный центр рибосомы, «ползущей» по иРНК.

Генетический код, его свойства.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. СВОЙСТВА:

  1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]
  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.
Читайте также:  Корень. внешнее и внутреннее строение корня - биология

5. Ауторепродукция днк. Репликон и его функционирование.

Процесс самовоспроизведения молекул нуклеиновых кислот, сопровождающийся передачей по наследству (от клетки к клетке) точных копий генетической информации; Р.

осуществляется с участием набора специфических ферментов (хеликаза , контролирующая расплетание молекулы ДНК, ДНК-полимеразы I и III, ДНК-лигаза ), проходит по полуконсервативному типу с образованием репликативной вилки ; на одной из цепей синтез комплементарной цепи непрерывен, а на другой происходит за счет образования фрагментов Дказаки ; Р. – высокоточный процесс, частота ошибок при котором не превышает 10-9; у эукариот Р. может происходить сразу в нескольких точках одной молекулы ДНК; скорость Р. у эукариот около 100, а у бактерий – около 1000 нуклеотидов в сек.

6. Уровни организации генома эукариот.

У эукариотических организмов механизм регуляции транскрипции гораздо более сложен. В результате клонирования и секвенирования генов эукариот обнаружены специфические последовательности, принимающие участие в транскрипции и трансляции. Для эукариотической клетки характерно: 1. Наличие интронов и экзонов в молекуле ДНК. 2.

Созревание и-РНК – вырезание интронов и сшивка экзонов. 3. Наличие регуляторных элементов, регулирующих транскрипцию, таких как: а) промоторы – 3 вида, на каждый из которых садится специфическая полимераза. Pol I реплицирует рибосомные гены, Pol II – структурные гены белков, Pol III – гены, кодирующие небольшие РНК.

Промотор Pol I и Pol II находятся перед участком инициации транскрипции, промотор Pol III – в рамках структурного гена; б) модуляторы – последовательности ДНК, усиливающие уровень транскрипции; в) усилители – последовательности, усиливающие уровень транскрипции и действующие независимо от своего положения относительно кодирующей части гена и состояния начальной точки синтеза РНК; г) терминаторы – специфические последовательности, прекращающие и трансляцию, и транскрипцию.

Эти последовательности по своей первичной структуре и расположению относительно инициирующего кодона отличаются от прокариотических, и бактериальная РНК-полимераза их не “узнает”.

Таким образом, для экспрессии эукариотических генов в клетках прокариот нужно, чтобы гены находились под контролем прокариотических регуляторных элементов.

Это обстоятельство необходимо учитывать при конструировании векторов для экспрессии.

7. Химический и структурный состав хромосом.

Химический состав хромосом ДНК- 40%, Гистоновых белков – 40%. Негистоновых – 20% немного РНК. Липиды,полисахариды,ионы металлов.

Химический состав хромосомы это – комплекс нуклеиновых кислот с белками, углеводами, липидами и металлами. В хромосоме происходит регуляция активности генов и их восстановление при химическом или радиационном повреждении.

СТРУКТУРНЫЙ????

Хромосомы – нуклеопротеидные структурные Элементы ядра клетки, содержащие, днк, в которой заключена наследственная Информация организма, способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду поколений.

в митотическом цикле наблюдаются следующие Особенности структурной организации хромосом:

Различают митотическую и интерфазные формы Структурной организации хромосом, взаимопереходящие друг в друга в митотическом Цикле – это функциональные и физиологические превращения

8. Уровни упаковки наследственного материала у эукариот.

Структурно-функциональные уровни организации наследственного материала эукариот

Наследственность и изменчивость обеспечивают:

1) индивидуальное (дискретное) наследование и изменение отдельных признаков;

2) вос­произведение в особях каждого поколения всего комплекса морфофункциональных характеристик организмов конкретного биологическо­го вида;

3) перераспределение у видов с половым размножением в процесс воспроизведения наследственных задатков, в результате чего потомок имеет сочетание признаков, отличное от их сочетания у родителей. Закономерности наследования и изменчивости признаков и их совокупностей вытекают из принципов структурно-функциональной организации генетического материала.

Различают три уровня организа­ции наследственного материала эукариотических организмов: генный, хромосомный и геномный (уровень генотипа).

Элементарной структурой генного уровня служит ген. Передача генов от родителей потомку необходима для развития у него определенных признаков.

Хотя известно несколько форм биологической изменчивости, только нарушение структуры генов изменяет смысл наследственной информации, в соответствии с которой формируются конкретные признаки и свойства.

Благодаря наличию генного уровня возможно индивидуальное, раздельное (дискретное) и независимое наследование и изменения отдельных признаков.

Гены клеток эукариот распределены группами по хро­мосомам. Это структуры клеточного ядра, которым свойст­венна индивидуальность и способность к самовоспроизведению с сохранением в ряду поколений индивидуальных черт строения. Наличие хромосом обусловливает выделение хромосомного уровня организации наследственного материала.

Размещение генов в хромосо­мах влияет на соотносительное наследование признаков, делает возможным воздействия на функцию гена со стороны его ближайшего генетического окружения — соседних генов.

Хромосомная организация наследственного материала служит необходимым условием перераспре­деления наследственных задатков родителей в потомках при половом размножении.

Несмотря на распределение по разным хромосомам, вся со­вокупность генов в функциональном отношении ведет себя как целое, образуя единую систему, представляющую геномный (генотипический) уровень организации наследственного материала.

На этом уровне происходит широкое взаимодействие и взаимовлияние наследственных задатков, локализующихся как в одной, так и в разных хромосомах.

Итогом является взаимосоответствие генетической информации разных наследственных задатков и, следова­тельно, сбалансированное по времени, месту и интенсивности развитие признаков в процессе онтогенеза.

Функциональная активность генов, режим репликации и мутационных изменений наследственного матери­ала также зависят от характеристик генотипа организма или клетки в целом. Об этом свидетельствует, например, относительность свойства доминантности.

Эу – и гетерохроматин.

Некото­рые хромосомы во время клеточного деления выглядят конденси­рованными и интенсивно окрашенными. Такие различия были названы гетеропикнозом.

Для обозначения районов хромосом, демонстрирующих положительный гетеропик­ноз на всех стадиях митотического цикла был предложен термин «гетерохроматин».

Различают эухроматин — основную часть митотических хромосом, которая претерпевает обычный цикл компактизации декомпактизации во время ми­тоза, и гетерохроматин — участки хромосом, постоянно находящиеся в компактном состоя­нии.

У большинства видов эукариот хромосо­мы содержат как эу-, так и гетерохроматино­вые участки, причем последние составляют значительную часть генома. Гетерохроматин располагается в прицентромерных, иногда в прителомерных областях. Обнаружены гетерохроматиновые участки в эухроматиновых плечах хромосом.

Они выглядят как вкрапления (интеркаляции) гетерохроматина в эухроматин. Такой гетеро­хроматин называют интеркалярным. Компактизация хроматина. Эухроматин и гетерохроматин различаются по циклам компактизации. Эухр. проходит полный цикл компактизации-декомпактизации от интерфазы до интерфазы, гетеро.

сохраняет состояние от­носительной компактности. Дифференциальная окрашиваемость. Разные участки гетерохроматина окраши­ваются разными красителями, некоторые рай­оны — каким-то одним, другие — несколькими.

Применяя различные красители и используя хромосомные перестройки, разры­вающие гетерохроматиновые районы, у дрозо­филы удалось охарактеризовать много неболь­ших районов, где сродство к окраскам отлично от соседних участках.

10. Морфологические особенности метафазной хромосомы.

Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида – хроматид, соединенных друг с другом в области первичной перетяжки – центромеры. Центромера – особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча.

В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s2024t3.html

что такое генетический код?

Роксолана Канцирук Мастер (1061) 9 лет назадГенети́ческий код – это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре нуклеотида — аденин (А) , гуанин (G), цитозин (С) , тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода.

В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе) . В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический кодДля построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Набор аминокиcлот также универсален для почти всех живых организмов.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на матрице иРНК) . Для кодирования 20 аминокислот, а также сигнала «стоп» , означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

кароче, он обозночает код, генетических совпадений

Источник: и-нет

Д Гуру (4568) 9 лет назадСистема зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных нуклеиновых кислотах – дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) -встречаются 5 распространённых типов нуклеотидов (по 4 в каждой нуклеиновой к-те) , различающихся по входящему в их состав азотистому основанию (см. Пуриновые основания, Пиримидиновые основания) . В ДНК встречаются основания: аденин (А) , гуанин (Г) , цитозин (Ц) , тимин (Т) ; в РНК вместо тимина присутствует урацил (У) . Кроме них, в составе нуклеиновых к-т обнаружено ок. 20 редко встречающихся (т. н. неканонических, или минорных) оснований, а также необычных Сахаров. Т. к. кол-во кодирующих знаков Г. к. (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42 = 16, но этого также недостаточно для зашифровки всех аминокислот. Амер. учёный Г. Гамов предложил (1954) модель триплетного Г. к. , т. е. такого, в к-ром 1 аминокислоту кодирует группа из трёх нуклеотидов, наз. кодоном. Число возможных триплетов равно 43 = 64, а это более чем втрое превышает число распространённых аминокислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует неск. кодонов (т. н. вырожденность кода) . Было предложено много различных моделей Г. к. , из к-рых серьёзного внимания заслуживали три модели (см. рис.) : перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены след. осн. закономерности, касающиеся Г. к. : Модели генетического кода: 1-й тип – перекрывающийся код без запятых; 2-й тип – неперекрывающийся код без запятых; 3-й тип – код с “промежутками”, т. е. код с запятыми. 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие (колинеарность Г. к.) ; 2) считывание Г. к. начинается с определённой точки; 3) считывание идёт в одном направлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых) ; 6) Г. к. , как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов (вырожденность Г. к. уменьшает вероятность того, что мутационная замена основания в триплете приведёт к ошибке) ; 7) кодовое число равно трём; 8) код в живой природе универсален (за нек-рыми исключениями) . Универсальность Г. к. подтверждается экспериментами по синтезу белка in vitro. Если в бесклеточную систему, полученную из одного организма (напр. , кишечной палочки) , добавить нуклеиновокислотную матрицу, полученную из др. организма, далеко отстоящего от первого в эволюционном отношении (напр. , проростков гороха) , то в такой системе будет идти белковый синтез. Благодаря работам амер. генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах

Из 64 кодонов у бактерий и фагов 3 ко-дона – УАА, УАГ и УГА – не кодируют аминокислот; они служат сигналом к освобождению полипептидной цепи с рибосомы, т. е. сигнализируют о завершении синтеза полипептида. Их наз. терминирующими кодонами. Существуют также 3 сигнала о начале синтеза – это т. н.

инициирующие кодоны – АУГ, ГУГ и УУГ, – к-рые, будучи включёнными в начале соответствующей информационной РНК (и-РНК) , определяют включение формилметионина в первое положение синтезируемой полипептидной цепи.

Читайте также:  Доказательства макроэволюции - биология

Приведённые данные справедливы для бактериальных систем; для высших организмов многое ещё не ясно.

Мария трещева Ученик (211) 1 год назадГенети́ческий код — свойственный всем живым организмам способ кодирования последовательности аминокислотных остатков в составе белков при помощи последовательности нуклеотидов в составе нуклеиновой кислоты.В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин, который заменён похожим нуклеотидом, содержащим урацил, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.Генетический код

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Источник: https://otvet.mail.ru/question/20772147

Генетический код: описание, характеристики, история исследования :

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция.

Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства.

Будет также приведена краткая хронология исследований.

Терминология

Генетический код – это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки – природные органические вещества с высокой молекулярностью.

Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства.

Встречается также несколько цепочек аминокислот в белке.

Днк и рнк

Дезоксирибонуклеиновая кислота – это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин.

РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки.

Благодаря такой структуре образовываются последовательности – “генетический алфавит”.

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот.

Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза.

Кроме того, был сделан акцент на то, что конкретная последовательность оснований – это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки.

В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и “дырами”, имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим.

Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида.

К неперекрывающимся относятся комбинационный и “код без запятых”. В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно “коду без запятых”, определенные триплеты соответствуют аминокислотам, а остальные нет.

В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в “коде без запятых”. Было выявлено, что кодоны способны провоцировать синтез белка в пробирке.

Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

  1. Триплетность. Последовательность трех нуклеотидов является значащей единицей кода.
  2. Непрерывность. Триплеты не имеют знаков препинания, наблюдается непрерывное считывание информации.
  3. Неперекрываемость. Нуклеотид входит в состав только одного триплета. У некоторых генов вирусов, бактерий и митохондрий кодируется несколько белков, и происходит считывание со сдвигом рамки.
  4. Однозначность. Конкретный кодон соответствует не больше чем одной аминокислоте. Правда, UGA у Euplotescrassus может кодировать цистеин и силеноцистеин.
  5. Вырожденность. Конкретной аминокислоте соответствует несколько кодонов.
  6. Универсальность. Генетический код действует по одному принципу в организмах различной сложности. В этом заключается суть генной инженерии. Однако существуют некоторые исключения.
  7. Помехоустойчивость. Мутационные замены нуклеотидов бывают консервативными и радикальными. Первые не приводят к смене класса кодируемой аминокислоты. Радикальные мутации изменяют класс кодируемой аминокислоты.

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов.

К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом.

Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК.

В настоящее время селеноцистеин считается 21-ой, пирролизан – 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Источник: https://www.syl.ru/article/143908/mod_geneticheskiy-kod-opisanie-harakteristiki-istoriya-issledovaniya

Генетический код

ГЕНЕТИЧЕСКИЙ КОД, способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты  нуклеотидов.

Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита.

Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тимина урацил – У (U).

Каждую аминокислоту кодирует комбинация из трёх нуклеотидов – триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок.

В особых случаях информация может переноситься от РНК к ДНК, но никогда не переносится от белка к генам.

Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК ( транскрипция ). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК.

Затем мРНК переходит в цитоплазму, прикрепляется к  рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка ( трансляция ). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК.

Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи.

Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка.

Другое свойство кода – его специфичность (однозначность): один кодон кодирует только одну аминокислоту.

Кроме того, код не перекрывается – информация считывается в одном направлении последовательно, триплет за триплетом. Наиболее удивительное свойство кода – его универсальность: он одинаков у всех живых существ – от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка.

Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается генетическая информация, осуществлена в 1961–1965 гг. и считается одним из наиболее ярких достижений молекулярной биологии.

Источник: http://ebiology.ru/geneticheskij-kod/

Что такое гены, геном и генетический код? – Сайт для Всезнаек и Почемучек

В любом организме главное вещество – белок. В нашем теле примерно 50 000 разных (!) белков. Их набором особи одного вида отличаются друг от друга и о-о-очень отличаются от других видов.

Ни одно существо не получает белки готовыми, все строят их из того, что поступают с пищей.

Но откуда организм знает, какие белки надо строить именно ему? К примеру, рабочий получает чертёж детали, которую ему поручено выточить. Ген – это и есть подобный «чертёж».

Каждый ген занимает часть очень длинной молекулы особого вещества. У него и название длинное: дезоксирибонуклеиновая кислота (ДНК).

Гены – это участки молекулы ДНК, в которых закодирована информация о строении белков. Ген может нести сведения и о строении необходимых для жизни рибонуклеиновых кислот (РНК).

Кроме того, в нём есть особые отрезки, которые могут его «включать» и «выключать». Есть и участки, роль которых неизвестна.

Большинство генов спрятано в клеточном ядре (если оно есть). Генов обычно много, поэтому молекула ДНК для экономии места свёрнута в компактную петляющую спираль. Если же вытянуть в одну линию все ДНК одной клетки человека, то они растянутся на пару метров. Можете себе представить плотность упаковки!

Читайте также:  Факторы, определяющие здоровье человека - биология

У большинства генов есть стабильное место на молекуле ДНК. Но некоторые могут «странствовать» – вырезают сами себя и перебираются на другое место.

Ген – самая маленькая единица наследственности. Подобно тому, как, например, копейка – самая мелкая денежная единица в России. Монетку можно распилить, но кусочки перестают быть деньгами. Так и ген: отрезок ДНК нетрудно разделить на составляющие его химические структуры, но они уже не будут обладать свойством наследственности.

Откуда берутся гены? Мужская и женская половые клетки несут по половине нужного набора генов, а когда сливаются, будущий организм получает весь комплект. И такая эстафета передаётся из поколения в поколение, тысячелетиями. А как родились самые первые гены? Этого не знает никто. Похоже, что их появление навсегда останется загадкой, такой же как происхождение самой жизни.

Что такое геном?

У большинства организмов в каждой клетке множество генов. Они работают не каждый сам по себе, а взаимодействуя друг с другом. Скажем, у львиного зева есть один ген, который определяет белую окраску лепестков, а другой – их красный цвет. Если оба эти гена оказались у одного растения, его цветы будут розовыми.

Гены могут подавлять или усиливать действие друг друга. Так, есть группа генов, которая определяет насыщенность кожи людей пигментом меланином. Чем больше у конкретного человека таких генов, тем темнее у него кожа.

В общем, есть смысл говорить о геноме – совокупности генов одного организма (часто вместо этого используют термин «генотип»). Размеры генома очень различаются.

Есть вирусы, у которых всего 2–3 гена; у человека же 20–25 тысяч пар активных генов.

Что такое генетический код?

На каком «языке» в ДНК зашифровано строение белков? Белки живых существ сложены из 20–22 «кирпичиков» – аминокислот. Повторяясь и комбинируясь, они и образуют миллиарды вариантов.

Значит, в ДНК должны быть некие «значки», которые будут соответствовать каждой из этих аминокислот. Такие «значки» есть. Это особые вещества – азотистые основания. В молекулу ДНК входит четыре их вида: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц).

Комбинации этих «букв» и образуют генетический код – систему записи в ДНК информации о порядке аминокислот в молекуле белка.

https://www.youtube.com/watch?v=hG5nq-54tSM

У генетического кода несколько важных свойств:

— «трёхбуквенность»;

— непрерывность;

— неперекрываемость;

— однозначность;

— универсальность.

Почему код «трёхбуквенный»? Потому что если брать только две «буквы», то из них можно составить лишь 16 «слов» (АТ, ТА, ГА, АГ и т.д.). А аминокислот-то 20! Из троек же можно построить 64 сочетания.

Каждой аминокислоте соответствует своя тройка. Например, ААЦ – аминокислоте лейцину, ЦАТ – валину, АТА – тирозину. Вдоль нити ДНК выстроена запись из коротких «слов». Например: ААЦЦАТАТААТАААЦ.

Эта «абракадабра» значит, что в каком-то белке аминокислоты должны стоять так: лейцин–валин–тирозин–тирозин–лейцин.

Есть ещё и тройки «букв», которые показывают, с какого места начать и где закончить «чтение».

«Слова» записаны непрерывно, без пробелов. Это позволяет втиснуть больше информации, не увеличивая размер гена. Да и считывать сплошную строку не так трудно. Вам ведь понятна надпись: ДЫМШЁЛТРИДНЯ? (Кстати, ещё лет четыреста назад на Руси так и писали – не разделяя слов).

Универсальность кода означает, что он един для всех существ Земли. У ромашки, тигра, человека и вируса гриппа тройка ААЦ означает лейцин, ЦАТ – валин и т. д. Исключения единичны. Это даёт зелёный свет генетической инженерии: гены одних организмов вполне могут работать, попав в другие.

Кстати, о зелёном свете. У одной из медуз есть белок, который излучает его во мраке океанских глубин. Южнокорейские биологи пересадили ген этого белка… кошкам.

На новом месте он прижился, передался котятам по наследству, а главное – заработал! Интересно, труднее ли стало светящимся кошкам ловить мышей?

Источник: http://www.vseznaika.org/biology/chto-takoe-geny-genom-i-geneticheskij-kod/

Понятие о гене, генетическом коде

Ген — структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойства. Совокупность генов родители передают потомкам во время размножения.Большой вклад в изучение гена внесли российские учёные: Симашкевич Е.А.,Гаврилова Ю.А.,Богомазова О.В.(2011 год)

В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК, таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена.

Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ.

cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements).

Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации.

Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов.

Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК.

Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма.

Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне.

Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека.[1] Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу,по имени которой и получила название сама ДНК, а так же остаток фосфорной кислоты.Эти соединения носят название нуклеотидов.

Свойства гена

  1. дискретность — несмешиваемость генов;
  2. стабильность — способность сохранять структуру;
  3. лабильность — способность многократно мутировать;
  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность — в генотипе диплоидных организмов только две формы гена;
  6. специфичность — каждый ген кодирует свой признак;
  7. плейотропия — множественный эффект гена;
  8. экспрессивность — степень выраженности гена в признаке;
  9. пенетрантность — частота проявления гена в фенотипе;
  10. амплификация — увеличение количества копий гена.

Классификация

  1. Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).
  2. Функциональные гены — регулируют работу структурных генов.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре нуклеотида — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода.

В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе).

В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Свойства

  1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]
  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

Биосинтез белка и его этапы

Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК.

Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК.

В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей.

После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки.

К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни мРНК.

С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК, — альтернативный сплайсинг.

Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК.

Аминокислотная последовательность выстраивается при помощи транспортных РНК (тРНК), которые образуют с аминокислотами комплексы — аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствующий антикодон, «подходящий» к кодону мРНК.

Во время трансляции рибосома движется вдоль мРНК, по мере этого наращивается полипептидная цепь. Энергией биосинтез белка обеспечивается за счёт АТФ.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.



Источник: https://infopedia.su/15×791.html

Ссылка на основную публикацию