Направления биотехнологии – биология

Медицина будущего: отвечает BIOCAD

Направления биотехнологии - биология

Сегодня перед биотехнологом стоит много нерешённых технологических задач. Можно изменять биологические организмы для обеспечения потребностей людей с помощью клеточных и генно-инженерных методов.

Например, улучшать качество продуктов, получать новые виды растений и модифицировать животных, придавать живым организмам необходимые свойства и создавать новые лекарственные препараты методами генной инженерии, искусственного отбора, гибридизации. 

Однако, чтобы работать биотехнологом, нужно знать не только генетику, молекулярную биологию, биохимию, клеточную биологию, но также ботанику, химию, математику, информационные технологии, физику и другое.

Грубо говоря, биотехнологи — это инженеры в области естественных и точных наук.

Генеральный директор инновационной биотехнологической Biocad Дмитрий Морозов рассказал об этой интересной профессии и будущем биотехнологий.

Biocad — это международная инновационная биотехнологическая компания. В ней есть научно-исследовательский центр, проводятся доклинические и клинические исследования собственных фармацевтических препаратов.

Департамент перспективных исследований Biocad занимается разработкой лекарственных препаратов передовой генной и клеточной терапии, а, кроме того, поиском и анализом сигнальных путей, закономерностей и мишеней, которые позволяют разрабатывать препараты превентивной медицины.

Дмитрий Морозов,

генеральный директор компании Biocad

Что такое биотехнология?

Про стволовые клетки

Биотехнология — это использование живых систем, клеток, организмов для практических нужд человека. То есть использование современной науки для манипуляции с живыми объектами, чтобы получить некую выгоду и улучшить жизнь человека. 

Биотехнология отталкивается от потребностей. Например, не зря люди ездят на север и изучают гейзеры. Они понимают, что 10 лет могут искать и ничего не найти.

Но они всё равно это делают, потому что рано или поздно найдут какую-нибудь бактерию, которая позволит делать дешёвое биотопливо, используя один ген этой бактерии.

Так или иначе каждый человек, когда занимается наукой, надеется её применить (кроме теоретических физиков, хотя, наверное, они тоже захотели бы в космос полететь). В компании Biocad мы используем микроорганизмы для создания лекарств.

В биотехнологии много дисциплин, и все успешные проекты и направления связаны с их комбинацией.

Говорят, все открытия происходят на стыке разных специальностей: математика, биология — биоинформатика; биология, химия — биохимия; медицина, информатика, биология — биомедицинская информатика. Это всё отдельные блоки, которыми занимаются разные люди.

Биотехнология сегодня, наверное, более всего уделяет внимание созданию лекарств разных типов. Кроме фармацевтического направления биотехнологии интересно сельское хозяйство (улучшение свойств еды), экология, энергетика (получение биотоплива) и прочее.

И, конечно, в будущем можно думать о коррекции человека.

Генная инженерия и биотехнология

Молодые учёные: как изменить школу, чтобы дети любили учиться

В биотехнологии важное место занимает генная инженерия. Она широко распространена в исследованиях, однако вовсе не обязательно использовать её методы, чтобы получить полезные свойства у объекта.

Например, можно разобраться в особенностях метаболизма организма: как он живёт в нормальной среде обитания и что получится, если мы переведём его в другую среду обитания, с другими питательными факторами, в другую атмосферу — возможно, это поможет ему в итоге , и это может быстрее размножаться.

Но это же не генная инженерия.

Биотехнология — это манипуляции со знаниями, которые есть о данном объекте. Генная инженерия просто расширяет круг возможностей, разных комбинаций, даёт возможность совершать манипуляции на уровне молекул, поэтому более точна.

Биотехнология на самом деле существует столько, сколько сельское хозяйство. В сельском хозяйстве часто есть конкретная практическая цель — например, вывести породу быстрых лошадей или устойчивое к холоду растение. Этим люди занимаются уже сотни лет с помощью селекции, которая на самом деле является генетическим методом отбора.

Биотехнологическая этика: как общество относится к биотеху?

Люди по-разному воспринимают нововведения в биотехнологии. Есть негативные и позитивные примеры восприятия.

Негативные — это, например, мнение, что внедрение нового приведёт к появлению вирусов, которые будут распространяться по всему миру и от которых нет ни вакцины, ни лечения, и что периодические эпидемии именно с этим и связаны.

Из позитивных — например, можно создать вирус, который на время меняет цвет глаз. Постепенно они становятся своего цвета, и каплями антибиотиков можно снова сделать их голубыми. Это мало связано со здравоохранением в привычном смысле, но всё равно здорово.

Подобные манипуляции уже в теории можно делать, и к таким технологиям общество относится позитивно и с улыбкой. Однако в целом люди боятся внедрения новых технологий.

Да и чтобы внедрить новое, нужно на высшем уровне обсудить этические вопросы того или иного воздействия препарата, и обычно это происходит долго.

Фото предоставлено компанией Biocad.

Биотехнология в Biocad: лечение нуклеиновой кислотой

Два года назад в Biocad мы открыли Департамент перспективных исследований, основная цель которого — создание лекарственных продуктов передовой генной терапии. Этот термин объединяет три группы лекарственных препаратов, которые не похожи на все остальные лекарства, к которым мы привыкли. 

Во-первых, это препараты для генной терапии, во-вторых, это препараты, в основе которых лежит манипуляция с соматическими и стволовыми клетками человека, в-третьих, это препараты тканевой инженерии.

В основе действия классических лекарств лежит либо малая молекула химической природы, либо какой-то белок, например, антитело, который можно легко получить с помощью биотехнологических методов. В нашей разработке лекарственным веществом, то есть действующим фактором, является нуклеиновая кислота РНК или ДНК. 

Это новый способ воздействия на организм человека. Это направление не так давно стало бурно развиваться, поэтому к нему пока что относятся  с осторожностью.

Как работают препараты для генной терапии

Предупреждён и вооружён: генетическое тестирование в онкологии

Наше лекарство — это рекомбинантный вирус, наночастица на базе вируса, внутри которой находится ген, которого недостаёт больному человеку.

Направлены эти продукты, как правило, на заболевания, которые плохо поддаются лечению (наследственные заболевания с тяжёлыми проявлениями вплоть до летального исхода в раннем возрасте: дистрофия, нарушение зрения, световосприятия, иммунодефициты). Это в основном моногенные заболевания, в которых проявление болезни обусловлено дефектом одного гена.

В таких случаях они очень хорошо лечатся. В лаборатории мы создаем терапевтические вирусные частицы, а биоинформатики помогают нам моделировать их работу.

В случае полигенных заболеваний, например, рака, можно использовать методы генной терапии для модификаций клеток иммунной системы человека, чтобы получать иммунные клетки с высокой специфичностью к опухолевым клеткам. В лабораториях наши учёные осуществляют полный цикл разработки этих двух типов продуктов (от идеи до создания прототипов, готовых для тестирования на животных). Такого в России нет, наверное, нигде.

Перспективные исследования в биотехнологии

медицина будущего: Развитие новых типов лекарств

Наш департамент назван по аналогии с Управлением перспективных исследовательских проектов США (DARPA). Они пытаются внедрять достижения науки в целях увеличения обороноспособности страны — это ускоренная регенерация, универсальные доноры, оружие и прочее.

Возможно, в ближайшие 5-10 лет благодаря взаимосвязи кибернетики и биотехнологии действительно будут созданы умные лекарства.

Например, создание очень маленьких чипов: это капсула или робот с частицами лекарственного средства, циркулирующие в крови, из которых в зависимости от состояния человека нужное вещество будет впрыскиваться в кровь. Подобным занимаются, например, в MIT.

Уже есть успешные примеры: в зависимости от уровня глюкозы в организм вбрасывается инсулин, что минимизирует степень инвазивности лечебной процедуры. Человек один раз внедрил чип, сделал инъекцию и на очень длительное время забыл, что нужно принимать лекарство.

Даже известный футуролог Рэй Курцвелл говорит, что люди начнут жить дольше с помощью нанороботов к 2025 году. Скорее всего, он имеет ввиду препараты, которые будут бороться с онкологическими заболеваниями.

Нанороботы — новый формат препаратов, потому что с точки зрения веществ, из которых состоят лекарства, люди уже всё сделали. Мы ничего больше предложить не можем — типов химических соединений, которые можно использовать для терапии немного. Это либо белки, либо малые молекулы, либо нуклеиновые кислоты, которые теперь тоже применяются. 

Вариантов и тех, и других, и третьих, конечно, можно сделать безграничное количество, но они имеют ограниченный потенциал применения, так как работают по общим химическим принципам. По-другому воздействовать на клетку уже никак невозможно.

Поэтому в будущем главным вопросом будет доставка нанороботами этих трёх «блоков», что приведет к появлению новых форматов терапии. 

Конечно, большинство хочет просто принять таблетку, но не все лекарственные вещества можно в неё «вложить». Более простой вариант — капсула. Более эффективный — инъекция и суппозитории. И если был бы какой-то универсальный способ лечения, например, закалывать какой-то чип с концентратом лекарственного средства под кожу, но раз в год, думаю, многие бы на это пошли.

Фото предоставлено компанией Biocad.

Диагностика заболеваний

Развитие малоинвазивных методов диагностики будет нужно человеку, чтобы, грубо говоря, по капле крови можно было быстро определять состояние человека: есть ли у него онкологическое заболевание и, если да, то есть ли метастазы, что за рак и прочее. 

Сейчас это можно делать по определённому количеству миллилитров крови с помощью высокопроизводительных методов, но пока это довольно дорого. Мы идём к индивидуальному профилированию человека, чтобы знать про себя всё до уровня молекулы. Человек будет понимать, что конкретно с ним происходит в данный момент. 

Может возникнуть нечто вроде социальной сети профайлов, где будут храниться все данные — например, по экспрессии генов за последний месяц.

Кажется, что здесь всё легко, но на самом деле это миллиарды последовательностей, сотни генов с разными мутациями, разной степени значимости.

Поэтому нужен будет новый класс врачей-теоретиков, которые будут уметь интерпретировать это огромное количество данных.

Регенерация, искусственный интеллект

Панчин о заряженной воде, шлаках и теологии

Наверное, в будущем мы научимся регенерировать ткани и органы. Уже сейчас выращивают органы с нуля до реального размера из клетки благодаря 3D-печати. Также пытаются восстанавливать спинной мозг после травмы — печатать нейроны в месте повреждения. Иными словами, прививать человеку его же клетки, размноженные в лабораторных условиях.

Также учёные будут больше использовать искусственный интеллект и нейросети, чтобы создавать новые лекарственные препараты.

Самообучающийся ИИ должен будет сам накапливать достаточное количество знаний, которые позволят ему давать правильные ответы.

Если это не контролировать, может, наверное, произойти катастрофа, но, с другой стороны, он сможет значительно развязать руки исследователям и дать возможность генерировать новые идеи, ведь ИИ будет брать на себя все рутинные процедуры.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник: https://newtonew.com/science/biotehnologiya-nauka-budushchego

Биотехнология. Основные направления и достижения

Биотехнология — это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились.

Читайте также:  Одноклеточные и многоклеточные организмы - биология

Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты.

Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт.

Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.

Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых.

Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других ценных металлов: марганца, цинка, меди, хрома и др.

Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека.

Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород — самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Источник: http://jbio.ru/biotexnologiya-osnovnye-napravleniya-i-dostizheniya

Специальность “биотехнологии и биоинженерия”: описание, программа и особенности :

Если век прошедший оставил за собой название космического, то нынешние времена характеризуются стремительным развитием новых технологий, внедрением в повседневную жизнь изобретений, которые еще не так давно считались выдумками писателей-фантастов. Наступает эра новых технологий.

Молодые люди на пороге серьезного выбора профессии все чаще обращают внимание на перспективные специальности будущего. Именно к таким относится специальность “биотехнология”.

Что же именно изучает эта наука и чем предстоит заниматься специалисту, выбравшему такое заманчивое занятие?

Историческая справка

Название этой науки состоит из сложения трех греческих слов: “био” – жизнь, “текне” – искусство, “логос” – наука. Специальность “биотехнология” одновременно является новым перспективным направлением, и вместе с тем ее можно назвать древнейшей отраслью промышленного производства.

В справочниках и словарях биотехнология определяется как наука, изучающая возможность использования природных химико-биологических процессов и объектов в промышленном производстве и повседневной жизнедеятельности человека.

Процессы брожения, использованные древними виноделами, хлебопекарями, поварами и лекарями, – не что иное, как применение биотехнологии на практике. Первое научное обоснование этим процессам дал в 19 веке Луи Пастер.

Сам термин «биотехнология» впервые употребил в 1917 году инженер из Венгрии Карл Эреки.

Специальности “биотехнология” и “биоинженерия” получили ускорение в развитии после ряда открытий в микробиологии и фармакологии. Ввод в эксплуатацию герметизированного оборудования, биореакторов дал толчок для создания противомикробных и антивирусных препаратов.

Связь наук

Современная химическая технология и биотехнология (специальность) объединяют биологические, химические и технические науки. Основой для новых изысканий в данной области становятся микробиология, генетика, химия, биохимия, молекулярная и клеточная биология, эмбриология. Значительную роль играют инженерные направления: робототехника, информационные технологии.

Специальность – биотехнология: где работать?

Под общими названиями специальности “биотехнология” скрывается более двадцати специализаций и направлений. Выпускников вузов с такой профессией смело можно назвать специалистами широкого профиля. Во время учебы они получают знания в области медицины, химии, общей биологии, экологии, пищевых технологий.

Биотехнологов ждут в парфюмерной и фармацевтической промышленности, на предприятиях по производству пищевых продуктов и биодобавок. Современность ждет новых разработок научных работников в сфере генной инженерии, бионики, гибридизации.

Место работы инженера – биолога может быть связано с предприятиями по охране окружающей среды, с работой в области космонавтики и робототехники. Инженеры, биохимики, биофизики, экологи, фармацевты, медики – все эти профессии соединяет в себе специальность “биотехнология”.

Кем работать, каждый выпускник вуза решает в соответствии со своими способностями и по зову сердца. Трудовые обязанности технолога – биолога зависят от особенностей отрасли, в которой он работает.

Промышленная биотехнология

Эта отрасль практикует использование частиц микроорганизмов, растений и животных для производства ценных продуктов, необходимых для жизнедеятельности человека.

В эту группу входят специальности “пищевая биотехнологи”, “фармацевтика”, парфюмерная отрасль. Промышленные биотехнологии работают над созданием новых ферментов, антибиотиков, удобрений, вакцин и т.д.

Основное направление деятельности биотехнолога на таких предприятиях – разработка биопрепаратов и соблюдение технологий их производства.

Молекулярная биотехнология

Специальность “биотехнология молекулярная” требует от профессионала углубленных знаний как общебиологического, так и инженерного направлений, современных компьютерных технологий.

Специалисты с такой спецификой становятся исследователями в сфере нанотехнологии, клеточной инженерии, медицинской диагностики.

Их ждут также сельскохозяйственные, фармацевтические, биотехнологические предприятия и контрольно-аналитические лаборатории, центры сертификации.

Биотехнологи – экологи и энергетики

Население планеты все больше обеспокоено тем фактом, что запасы природных энергоносителей, нефти и газа, имеют свои пределы, масштабы их добычи со временем будут сокращаться. Помочь человечеству решить проблему энергоснабжения помогут люди, чья специальность – биотехнология.

Кем работать в этой отрасли? Технологом по переработке отходов различного происхождения, специально выращенной биомассы в энергоносители и веществ, которые могут заменить синтетические вещества нефти и газа.

Биотехнологи создают новые методы очищения воды, проектируют очистные сооружения и биореакторы, работают в области генной инженерии.

Перспективы специальности

Кто такой биотехнолог? Профессия биотехнолога – это профессия будущего. За его плечами судьба всего человечества. Это не просто красивый лозунг – это цель биоинженерии. Задача биологов-технологов – создать то, что сейчас кажется сказкой и фантастической мечтой.

Некоторые ученые даже называют современную эпоху эрой биологии. Так, за последнюю сотню лет биологи из просто исследователей превратились в создателей. Раскрытие молекулярных секретов организмов, природы наследственности позволило использовать эти процессы в практических хозяйственных целях.

Это стало толчком для развития нового направления – биологической инженерии.

Чем могут удивить генетики в скором будущем?

Уже сейчас биоинженерия оказывает значительное влияние на охрану окружающей среды, медицину, сельское хозяйство, пищевую промышленность, а в ближайших планах биотехнологов – новые методы и приемы. Те, кто планирует связать свою судьбу со специальностью “биотехнология”, где работать, в каком направлении, могут узнать из представленной ниже информации:

  • В первую очередь революционные изменения могут произойти в сельскохозяйственном производстве. Есть возможность искусственно создавать новые растения с повышенным содержанием белка, что сократит, в свою очередь, потребление мяса.
  • Растения, которые сами будут выделять яды от насекомых и нитраты, позволят уменьшить загрязнение почвы удобрениями и химикатами.
  • Генетическая инженерия позволяет управлять наследственностью и бороться с наследственными заболеваниями.
  • Биологи-конструкторы планируют искусственно создавать организмы с заранее обусловленными качествами.
  • Энергия и топливо из растений, грибов, бактерий, а также использование в этих целях энергии моря.
  • Генно-модифицированные зерновые культуры.
  • Безотходный производственный круг – переработка всех видов отходов.
  • Использование биоматериалов для регеративной медицины.
  • Новые виды биологических лекарств и вакцин.
  • Восстановление потенциала плодородных земель и пресной воды.
  • Исследования человеческого генома и наследственных болезней.

Направления биоинженерии, которые круто изменят мир

Они следующие:

  • Энергия и топливо из растений, грибов, бактерий, а также использование в этих целях энергии моря.
  • Генно-модифицированные зерновые культуры.
  • Безотходный производственный круг – переработка всех видов отходов.
  • Использование биоматериалов для регеративной медицины.
  • Новые виды биологических лекарств и вакцин.
  • Восстановление потенциала плодородных земель и пресной воды.
  • Исследования человеческого генома и наследственных болезней.

Издержки профессии

Говоря о преимуществах и перспективах биотехнологии, нельзя не упомянуть о некоторых минусах науки. Речь идет о моральных аспектах, связанных с открытиями генной инженерии.

Многие ученые с мировым именем, религиозные деятели предупреждают о том, что использовать возможности нанотехнологий необходимо с умом и под особым контролем. Генно-модифицированные продукты питания могут привести к непоправимым изменениям в генофонде человечества.

Клонирование человека, появление людей, рожденных «в пробирке», ведут к новым проблемам и, возможно, к человеческим катастрофам.

Кто может стать биотехнологом?

Прежде всего, это человек, который любит природу, биологию, интересуется тайнами генетики. Кроме того, биотехнологу необходимы умение креативно мыслить, логика, наблюдательность, терпение и любознательность. Пригодятся такие качества, как целеустремленность, умение анализировать и систематизировать, аккуратность и широкая эрудированность.

Так как биоиженерия предполагает тесную связь с другими науками, будущему технологу необходимы в равной мере хорошие знания химии, математики, физики.

Где учат профессии?

Профориентация определена, абитуриент выбрал профессию биотехнолога: где учиться? Особенности специальности предполагают соответствующие факультеты, в зависимости от выбранной отрасли народного хозяйства.

Факультеты биотехнологии есть практически во всех государственных университетах в нашей стране и за рубежом.

Биотехнологов готовят технические, сельскохозяйственные, пищевые, технологические университеты по различным направлениям и специализациям.

Факультеты биотехнологии специальности предлагают следующие:

  • Промышленная биотехнология.
  • Экобиотехнология и биоэнергетика.
  • Биотехника и инженерия.
  • Биоинформатика.
  • Молекулярная биотехнология.
  • Оборудование для биотехнологических производств.
  • Фармацевтическая биотехнология.
  • Химические технологии пищевых добавок и косметических средств.
  • Химические технологии и инженерия.
Читайте также:  Выводы к главе Человек и окружающая среда, Биология

Источник: https://www.syl.ru/article/347722/spetsialnost-biotehnologii-i-bioinjeneriya-opisanie-programma-i-osobennosti

Биотехнология, ее направления

Биотехнология — это применение биологических процессов и использование живых организмов в промышленности, медицине, сельском хозяйстве и других отраслях человеческой деятельности.

Несмотря на то, что биологические процессы издавна используются человеком в хлебопечении, сыроварении, виноделии, пивоварении, научный этап развития биотехнологии начался с 70-х годов ХIХ века с открытием Л.

Пастером процесса брожения, а столетием позже биотехнология превратилась в бурно развивающуюся отрасль.

В настоящее время прогресс в области биотехнологии тесно связан с применением методов генной и клеточной инженерии, а также клонированием.

В качестве основных направлений биотехнологии рассматриваются получение продуктов питания, кормовых добавок и ценных кормовых белков, лекарственных препаратов и средств диагностики, биотоплива, борьба с загрязнением окружающей среды, защита растений от вредителей и болезней, а также создание штаммов микроорганизмов, сортов растений и пород животных с новыми полезными свойствами.

В настоящее время в хлебопекарной и кондитерской промышленностях, пивоварении и виноделии применяются различные штаммы дрожжей.

Благодаря способности осуществлять спиртовое брожение для них нашлось место и в технологиях выработки биотоплива, например, биодизеля из растительного сырья, особенно рапса.

Другие микроскопические грибы широко используют для получения кефира, сыров, антибиотиков, лимонной кислоты, кормовых белков и т. д.

Без бактерий невозможно получить никакие кисломолочные продукты, в том числе кефир, йогурт и сыры.

Брожение, осуществляемое молочнокислыми бактериями, используется и в процессах приготовления квашеных овощей, а также силоса, поскольку накапливающиеся при этом продукты реакции угнетают развитие других микроорганизмов.

Не меньшую роль бактерии играют и в фармацевтической промышленности, где они культивируются с целью получения витаминов, гормонов и ферментов. Первой микробиологический синтез гормона инсулина с помощью методов генной инженерии «освоила» кишечная палочка Escherichiacoli.

Очистка окружающей среды ведется в основном в двух направлениях: разложение органических остатков и накопление отдельных химических элементов, органических и неорганических веществ некоторыми видами бактерий, водорослей и простейших.

С помощью методов селекции и генной инженерии уже выведены штаммы бактерий, способные разлагать соединения, утилизировать которые встречающиеся в природе виды неспособны, например пластмассы и полиэтилен.

В процессе расщепления органических остатков бактерии могут выделять и горючие газы, в том числе метан, что легло в основу технологий получения биогаза из отходов растениеводства и животноводства.

В связи с тем, что бактерии, грибы и вирусы способны эффективно бороться с вредителями сельского и лесного хозяйства, а также с возбудителями и переносчиками заболеваний, их штаммы используют для приготовления биопрепаратов.

Преимущество этих биологических методов борьбы состоит в том, что они не только снижают численность паразитов, будучи безвредными для других организмов, но и не загрязняют при этом окружающую среду токсичными соединениями.

Клеточная и генная инженерия, клонирование

Клеточная инженерия — метод конструирования клеток нового типа на основе их культивирования на питательной среде, гибридизации и реконструкции. При этом в клетки вводят новые хромосомы, ядра и другие клеточные структуры.

Достижения клеточной инженерии растений, которая позволяет сформировать целое растение, в том числе с измененными свойствами, из отдельной клетки, нашли широкое применение в растениеводстве и селекции. Так, стали возможными соматическая гибридизация, клеточная селекция, гаплоидизация, преодоление нескрещиваемости в культуре и другие приемы.

Технологии искусственного оплодотворения, за разработку которых присуждена Нобелевская премия в области физиологии и медицины в 2010 году, также базируются на методах клеточной инженерии.

Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Во многих случаях это сводится к переносу необходимых генов от одного вида живых организмов к другому, зачастую очень далекому по происхождению.

Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма- донора (вируса, бактерии, растения, животного, гриба) и его выделению. Это наиболее трудная часть работы, поскольку вместе со структурным геном необходимо перенести и регуляторные.

Затем необходимо встроить данный участок молекулы ДНК в генетический вектор (переносчик ДНК). В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК.

Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией. Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген.

В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными.

Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы.

Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. е. из одной клетки можно восстановить целый организм, особенно если культивировать эти клетки на питательной среде со всеми необходимыми веществами.

Массовое размножение генетически идентичных животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли.

Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери. Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы.

После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. К сожалению, из пяти пересаженных эмбрионов выжил лишь один.

В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др., однако клонирование человека запрещено законодательством многих государств и международными договорами.

Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма.

Источник: https://studopedia.net/5_37767_biotehnologiya-ee-napravleniya.html

Абитуриентам

СОБЕСЕДОВАНИЕ С ДЕКАНОМ

ДОРОГОЙ АБИТУРИЕНТ!

Факультет биотехнологии и биологии проводит набор абитуриентов по двум направлениям подготовки бакалавров «Биотехнология» и «Биология», а также на специальность «Биоинженерия и биоинформатика» и магистров.

Специальность БИОИНЖЕНЕРИЯ И БИОИНФОРМАТИКА

 Квалификация (степень): специалист

Форма обучения – очная (срок обучения 5 лет).

Вступительные испытания: ЕГЭ – биология, математика, русский язык.

Биоинженерия и биоинформатика – это новейшее, прогрессивное направление подготовки специалистов в области биологии, широко востребованное в ведущих странах мира.

Оно предполагает изучение фундаментальных основ жизни, принципов манипуляций с живыми организмами и их клетками, включая создание организмов с измененными свойствами, биороботов, искусственной клетки и др.

Специалисты в этой сфере расшифровывают геномы, изучают пространственную структуру биомолекул, взаимодействие биологических объектов, а также разрабатывают методы молекулярной диагностики и выбора новых путей развития лекарственных препаратов.

Обучение основано на изучении дисциплин биоинженерного профиля (генной инженерии; биоинженерии микроорганизмов, растений и животных; клонирования и трансплантации клеток; инженерной энзимологии и бионформатики) и дополняется дисциплинами с учетом развития направлений биотехнологической промышленности.

Для полноценной учебы на факультете имеется все необходимое оснащение, включая лаборатории микроскопии и компьютерного анализа биообъектов, фундаментальной биотехнологии и биоинженерии и др.

Специалисты-биоинженеры востребованы на производстве и в научной отрасли. Полученные знания и навыки позволят выпускникам работать на самых современных предприятиях, в научно-производственных комплексах, биохимических, биомедицинских, аналитических, генетических лабораториях, фармацевтических, пищевых и перерабатывающих предприятиях.

НАПРАВЛЕНИЯ БАКАЛАВРИАТА

БИОТЕХНОЛОГИЯ

Квалификация (степень) – бакалавр

Профили: «Биотехнология лекарственных препаратов», «Пищевая биотехнология», «Фундаментальная биотехнология».

Формы обучения – очная (срок обучения 4 года), заочная (срок обучения 5 лет.

Вступительные испытания: Биология, Математика, Русский язык

Современная биотехнология – направление прикладной биологии, которое во многом определяет научно-технический прогресс, и во всем мире бурно развивается, привлекая огромные ресурсы.

Новейшие фармакологические препараты и продукты питания, диагностические тест-системы – эти достижения биотехнологии уже вошли в нашу жизнь, и их число растет с каждым днем.

Кроме того, биотехнология решает энергетические и экологические проблемы, стоящие перед человечеством.

Перед студентами-биотехнологами открываются широчайшие перспективы практической и научной деятельности в одной из самых инновационных областей знания.

Выпускники могут работать в научно-исследовательских институтах и научно-практических центрах, а также в качестве инженеров-биотехнологов на перерабатывающих предприятиях пищевой и микробиологической промышленности, на предприятиях по производству лекарственных препаратов.

Наши выпускники работают технологами и руководителями на таких предприятиях как ОАО «Биохимик», ОАО «Молочный комбинат «Саранский», ОАО «Бисинтез», ОАО «Хлебозавод», ОАО «Мордовспирт», ОАО «СанИнБев», ОАО «Агрофирма «Октябрьская», Агрохолдинг «Талина», ОАО «Мясомбинат «Черкизовский», ЗАО «Мясокомбинат «Микояновский», и других предприятиях и научных центрах России, Европы и Америки. Многие выпускники создали свои малые предприятия по производству пищевых продуктов и экологии.

 БИОЛОГИЯ

Квалификация (степень) – бакалавр

Формы обучения – очная (срок обучения 4 года).

Вступительные испытания – ЕГЭ по биологии, русскому языку, математике.

Студенты изучают процессы, происходящие в живой природе. Выпускники-биологи обладают фундаментальными знаниями и практическими навыками, которые необходимы для работы в биохимических, биомедицинских лабораториях, лабораториях генетического анализа, в природоохранных и экологических структурах, производственных предприятиях, школах.

 НАПРАВЛЕНИЯ МАГИСТРАТУРЫ

 При желании дальше покорять научные вершины или заниматься преподавательской деятельностью в вузах, необходимо поступление в магистратуру.

Магистратура – следующая за бакалавриатом ступень высшего образования, ориентирующая студента на научно-исследовательскую деятельность. Кроме того, магистратура позволяет по трудовому законодательству занимать более высокие должности на производстве и научных подразделениях.

Обучение в магистратуре длится два года и готовит высококвалифицированных специалистов, способных к решению наиболее сложных задач профессиональной деятельности. По окончании данной программы, выпускнику выдается диплом о высшем профессиональном образовании с присвоением степени «магистр».

Для поступления в магистратуру необходимо сдать междисциплинарный экзамен по программе соответствующего бакалавриата.

Направление подготовки «БИОЛОГИЯ»: профили: «Генетика», «Биохимия и молекулярная биология», «Ботаника», «Экология», «Зоология позвоночных».

Направление подготовки «БИОТЕХНОЛОГИЯ»: профили «Фундаментальная биотехнология», «Биотехнология биокомпозиционных материалов», «Биоэнергетика».

СТУДЕНЧЕСКОЕ ОБЩЕЖИТИЕ

Студенты факультета биотехнологии и биологии (иногородние и с районов Мордовии) обеспечиваются общежитием. Всего  зарезервировано 182 места, из них: 82 – в новом общежитии № 15. Номера рассчитаны на 2 – 3 места.

Общежитие № 8

Номера рассчитаны на 2 – 3 места. В каждом номере имеется:

  • мини-кухня с мойкой,электрической плитой, вытяжкой и холодильником;
  • совмещенная с туалетом ванная комната с зеркалом;
  • кровати;
  • прикроватные тумбочки;
  • шкафы для одежды;
  • вешалка для верхней одежды;
  • стулья.

На каждом этаже находятся:

  • комнаты для занятий с беспроводным доступом к Internet;
  • прачечная самообслуживания с автоматическими стиральными машинами.

Общежитие располагает комнатами для студентов, пользующихся инвалидными креслами-колясками.

Стоимость проживания составляет 1 050 рублей за 1 месяц.

Читайте также:  Вода в природе - биология

В непосредственной близости от общежития расположены:

  • ФОК;
  • каток;
  • лыжная база МГУ им. Н. П. Огарёва.

По вопросам, связанным с поступлением на факультет биотехнологии и биологии, можно обратиться по адресу электронной почты: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.  или по телефону: 8 (834 2) 32-25-23 

 ВАМ ИНТЕРЕСНА БИОЛОГИЯ? 

ВЫ ВИДИТЕ В СЕБЯ НАУКЕ? 

ВЫ ПОНИМАЕТЕ ВСЕ ПЕРСПЕКТИВЫ РАЗВИТИЯ БИОТЕХНОЛОГИИ И БИОИНЖЕНЕРИИ? 

ХОТИТЕ БЫТЬ ВОСТРЕБОВАННЫМ ПРОФЕССИОНАЛОМ?

ФАКУЛЬТЕТ БИОТЕХНОЛОГИИ И БИОЛОГИИ БУДЕТ РАД ПОМОЧЬ ВАМ РЕАЛИЗОВАТЬСЯ!!!

Источник: http://bio.mrsu.ru/index.php/ru/abiturients/study-programs

Биотехнологии (3)

Сохрани ссылку в одной из сетей:

Основные направления биотехнологий.

Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.

    1. Медицинские биотехнологии.

Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют на химические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).

Химические диагностические биотехнологии используются в медицине давно.

Но если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др. Кроме того, современная диагностика разрабатывает методы функционального подхода, с помощью которого можно оценивать влияние функциональных воздействий на изменение диагностических веществ, а следовательно, выявлять резервные возможности организма.

В будущем возрастет роль физической диагностики, которая дешевле и быстрее, чем химическая, и состоит в определении физико-химических процессов, лежащих в основе жизнедеятельности клетки, а также физических процессов (тепловых, акустических, электромагнитных и др.

) на тканевом уровне, уровне органов и организма в целом.

На базе такого рода анализа в рамках биофизики сложных биологических систем будут развиваться новые методы физиотерапии, выяснится смысл многих так называемых нетрадиционных методов лечения, приемов народной медицины и т.д.

Биотехнологии широко используются в фармакологии. В древности для лечения больных применяли животные, растительные и минеральные вещества. Начиная с XIX в. в фармакологии получают распространение синтетические химические препараты, а с середины XX в.

и антибиотики — особые химические вещества, которые образуются микроорганизмами и способны оказывать избирательно токсическое воздействие на другие микроорганизмы. В конце XX в.

фармакологи обратились к индивидуальным биологически активным соединениям и стали составлять их оптимальные композиции, а также использовать специфические активаторы и ингибиторы определенных ферментов, суть действия которых — в вытеснении патогенной микрофлоры невредной для здоровья людей микрофлорой (использование микробного антагонизма).

Биотехнологии помогают в борьбе современной медицины с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом). Так, развитие иммунологии (науки, изучающей защитные свойства организма) способствует лечению аллергии. При аллергии организм отвечает на воздействие некоторого специфического аллергена чрезмерной реакцией, повреждающей его собственные клетки и ткани в результате отека, воспаления, спазма, нарушений микроциркуляции, гемодинамики и др. Иммунология, изучая клетки, осуществляющие иммунный ответ (иммуноциты), позволяет создавать новые подходы к лечению иммунологических, онкологических и инфекционных заболеваний.

Человек пока не умеет лечить СПИД и плохо лечит вирусные инфекции. Химиотерапия и антибиотики, эффективные в борьбе с бактериальной инфекцией, неэффективны в отношении вирусов (например, возбудителей атипичной пневмонии).

Предполагается, что здесь существенный прогресс будет достигнут благодаря развитию иммунологии, молекулярной биологии вирусов, в частности изучению взаимодействия вирусов со специфическими для них клеточными рецепторами.

Биотехнологическими способами производят витамины, диагностические средства для клинических исследований (тест-системы на наркотики, лекарства, гормоны и т.п.), биоразлагаемые пластмассы, антибиотики, биосовместимые материалы. Новая область биоиндустрии — производство пищевых добавок.

Сельскохозяйственные

В XX в. произошла «зеленая революция» — за счет использования минеральных удобрений, пестицидов и инсектицидов удалось добиться резкого повышения продуктивности растениеводства. Но сейчас понятны и ее отрицательные последствия, например насыщение продуктов питания нитратами и ядохимикатами.

Основная задача современных агробиотехнологий — преодоление отрицательных последствий «зеленой революции», микробиологический синтез средств защиты растений, производства кормов и ферментов для кормопроизводства и др.

При этом упор делается на биологические методы восстановления плодородия почвы, биологические методы борьбы с вредителями сельскохозяйственных культур, на переход от монокультур к поликультурам (что повышает выход биомассы с единицы площади сельхозугодий), выведение новых высокопродуктивных и обладающих другими полезными свойствами (например, засухоустойчивостью или устойчивостью к засолению) сортов культурных растений.

Продовольственные сельскохозяйственные культуры служат сырьем для пищевой промышленности.

Биотехнологии используются при изготовлении пищевых продуктов из растительного и животного сырья, их хранении и кулинарной обработке, при производстве искусственной пищи (искусственной икры, искусственного мяса из сои, бобы которой богаты полноценным белком), при производстве корма для скота из продуктов, полученных из водорослей и микробной биомассы (например, получение кормовой биомассы из микробов, растущих на нефти).

Поскольку микроорганизмы чрезвычайно разнообразны, микробиологическая промышленность на их основе вырабатывает самые разные продукты, например ферментные препараты, находящие широкое применение в производстве пива, спирта и т.д.

    1. Экологические биотехнологии.

Биотехнологии выступают одним из важнейших способов решения экологических проблем. Они применяются для уничтожения загрязнений окружающей среды (например, очистка воды или очистка от нефтяных загрязнений), для восстановления разрушенных биоценозов (тропических лесов, северной тундры), восстановления популяций исчезающих видов или акклиматизации растений и животных в новых местах обитания.

Так, с помощью биотехнологий решается проблема освоения загрязненных территорий устойчивыми к этим загрязнениям видами растений. Например, зимой в городах для борьбы со снежными заносами используются минеральные соли, от которых гибнут многие виды растений.

Однако некоторые растения устойчивы к засолению, способны поглощать цинк, кобальт, кадмий, никель и другие металлы из загрязненных почв; конечно, они предпочтительнее в условиях больших городов.

Выведение сортов растений с новыми свойствами — одно из направлений экологической биотехнологии.

Важные направления экологических биотехнологий — ресурсная биотехнология (использование биосистем для разработки полезных ископаемых), биотехнологическая (с использованием бактериальных штаммов) переработка промышленных и бытовых отходов, очистка сточных вод, обеззараживание воздуха, генно-инженерные экологические биотехнологии.

Многообразие сфер применения биотехнологий. Биотехнологии успешно применяются в некоторых «экзотических» отраслях. Так, во многих странах микробная биотехнология используется для повышения нефтеотдачи.

Микробиологические технологии исключительно эффективны и при получении цветных и благородных металлов.

Если традиционная технология включает в себя обжиг, при котором в атмосферу выбрасывается большое количество вредных серосодержащих газов, то при микробной технологии руда переводится в раствор (микробное окисление), а затем путем электролиза из него получают ценные металлы.

Использование метанотрофных бактерий позволяет снизить концентрацию метана в шахтах. А для отечественной угледобычи проблема шахтного метана всегда была одной из самых острых: по статистике, из-за взрывов метана в шахтах каждый добытый 1 млн т угля уносит жизнь одного шахтера.

Созданные биотехнологическими методами ферментные препараты находят широкое применение в производстве стиральных порошков, в текстильной и кожевенной промышленности.

Космическая биология и медицина изучают закономерности функционирования живых организмов, прежде всего человеческого, в условиях космоса, космического полета, пребывания на других планетах и телах Солнечной системы.

Одним из важных направлений в этой области является разработка космических биотехнологий — замкнутых биосистем, предназначенных для функционирования в условиях длительного космического полета. Созданная отечественной наукой система такого рода способна обеспечить жизнедеятельность космонавтов в течение 14 лет.

Этого вполне достаточно для реализации космической мечты человечества — полета к ближайшим планетам Солнечной системы, прежде всего к Марсу.

Таким образом, современные биотехнологии исключительно разнообразны. Не случайно XXI в. нередко называют веком биотехнологии. Важнейшим ответвлением биотехнологии, открывающим самые ошеломляющие перспективы перед человечеством, является генная инженерия.

Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты.

Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое.

Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур — рекомбинантных ДНК(молекул ДНК, которые получаются в результате ковалентного объединения вектора и чужеродного фрагмента ДНК).

Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов — белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК.

Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онко-генного вируса обезьяны, а затем — микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д.

Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях животных и растений в весьма низких концентрациях: инсулина, интерферона человека, гормона роста человека, вакцины против гепатита, а также ферментов, гормональных препаратов, клеточных гибридов, синтезирующих антитела желаемой специфичности, и т.п.

Генная инженерия открыла перспективы конструирования новых биологических организмов — трансгенных растений и животных с заранее запланированными свойствами.

По сути, непреодолимых природных ограничений для синтеза генов нет (так, существуют программы по созданию трансгенной овцы, покрытой вместо шерсти шелком; трансгенной козы, молоко которой содержит ценный для человека интерферон; трансгенного шпината, который вырабатывает белок, подавляющий ВИЧ-инфекции, и др.).

Возникла новая отрасль промышленности — трансгенная биотехнология, занимающаяся конструированием и применением трансгенных организмов. (Сейчас в США функционирует уже около 2500 генно-инженерных фирм.)

В неразрывной связи с разработкой технологий генной инженерии развиваются фундаментальные исследования в молекулярной биологии. Одним из важнейших направлений молекулярной биологии и генной инженерии является изучение геномов растительных и животных видов и разработка способов их реконструкции.

Геном — это совокупность генов, характерных для гаплоидного, т.е. одинарного набора хромосом данного вида организмов. В отличие от генотипа геном представляет собой характеристику вида, а не отдельной особи.

Общая логика исследования ведет молекулярную биологию от выяснения способов воссоздания генома вида к разработке способов воссоздания генотипа особи.

Огромное значение имеет изучение генома человека. В рамках одного из самых трудоемких и дорогостоящих в истории науки международного проекта «Геном человека» (начат в 1988 г., задействовано несколько тысяч ученых из более чем 20 стран; стоимость — до 9 млрд долл.

) была поставлена задача — выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и локализовать их, т.е. полностью картировать все гены человека.

Ожидается, что затем исследователи определят все функции генов и разработают технологические способы использования этих данных.

Источник: http://works.doklad.ru/view/hLhgJckXVuI/2.html

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]