Достижения биотехнологии – биология

Что такое биотехнология? История и достижения биотехнологии :

Достижения биотехнологии - биология

Дисциплина, изучающая способы использования организмов для решения технологических задач, – вот что такое биотехнология.

А проще говоря, это наука, которая изучает живые организмы в поисках новых способов для обеспечения человеческих потребностей.

Например, генная инженерия или клонирование – это новые дисциплины, которые используют с одинаковой активностью как организмы, так и новейшие компьютерные технологии.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов – вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве.

И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК.

Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год).

XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток.

Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков.

Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик – пенициллин.

Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Биоинженерия

На вопрос о том, что такое биотехнология, основная часть населения без сомнений ответит, что это не что иное, как генная инженерия. Отчасти это правда, но инженерия лишь часть обширной дисциплины биотехнологий.

Биоинженерия – это дисциплина, основная деятельность которой направлена на укрепление человеческого здоровья посредством объединения знаний из области инженерии, медицины, биологии и применения их на практике. Полное название этой дисциплины – биомедицинская инженерия.

Главная ее специализация – решение медицинских проблем. Применение биотехнологий в медицине позволяет моделировать, разрабатывать и изучать новые субстанции, разрабатывать фармацевтические препараты и даже избавлять человека от врожденных заболеваний, что передаются по ДНК.

Специалисты в этой области могут создавать приборы и оборудование для проведения новых процедур. Благодаря применению биотехнологий в медицине были разработаны искусственные суставы, кардиостимуляторы, протезы кожи, аппараты искусственного кровообращения.

При помощи новых компьютерных технологий специалисты в области биоинженерии могут создавать белки с новыми свойствами при помощи компьютерного моделирования.

Биомедицина и фармакология

Развитие биотехнологий дало возможность по-новому посмотреть на медицину. Нарабатывая теоретическую базу о человеческом организме, специалисты в этой области имеют возможность использовать нанотехнологии для изменения биологических систем.

Развитие биомедицины дало толчок для появления наномедицины, основная деятельность которой заключается в слежении, исправлении и конструировании живых систем на молекулярном уровне. К примеру, адресная доставка лекарств.

Это не курьерская доставка от аптеки до дома, а передача препарата непосредственно к больной клетке организма.

Также развивается и биофармакология. Она изучает эффекты, которые оказывают вещества биологического или биотехнологического происхождения на организм. Исследования этой области знаний сосредоточены на изучении биофармацевтических препаратов и разработке способов для их создания. В биофармакологии лечебные средства получают из живых биологических систем или тканей организма.

Биоинформатика и бионика

Но биотехнологии – это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике.

Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику.

Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида – биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем.

А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Клеточная инженерия

Одним из самых важных методов в биотехнологии является генная и клеточная инженерия, которые сосредоточены на создании новых клеток.

С помощью этих инструментов человечество получило возможность создавать жизнеспособные клетки из совершенно разных элементов, принадлежащих различным видам. Таким образом, создается новый не существующий в природе набор генов.

Генная инженерия дает возможность человеку получить желаемые качества от модифицированных клеток растений или животных.

Особенно ценятся достижения генной инженерии в сельском хозяйстве. Это позволяет выращивать растения (или животных) с улучшенными качествами, так называемые селекционные виды. Селекционная деятельность основана на отборе животных или растений с ярко выраженными благоприятными признаками.

После эти организмы скрещивают и получают гибрид с требуемой комбинацией полезных признаков. Конечно, на словах все звучит просто, но получить искомый гибрид достаточно сложно. В реальности можно получить организм только с одним или несколькими полезными генами.

То есть к исходному материалу добавляется лишь несколько дополнительных качеств, но даже это позволило сделать огромный шаг в развитии сельского хозяйства.

Селекция и биотехнологии дали возможность фермерам повысить урожайность, сделать плоды более крупными, вкусными, а главное, стойкими к морозам. Не обходит селекция стороной и животноводческую сферу деятельности. С каждым годом появляются новые породы домашних животных, которые могут давать больше поголовья и продуктов питания.

Достижения

В создании селекционных растений ученые выделяют три волны:

  1. Конец 80-х годов. Тогда ученые впервые начали выводить растения, устойчивые к вирусам. Для этого они брали один ген у видов, которые могли противостоять заболеваниям, «пересаживали» его в ДНК-структуру других растений и заставляли «работать».
  2. Начало 2000-х годов. В этот период начали создаваться растения с новыми потребительскими свойствами. Например, с повышенным содержанием масел, витаминов и т. д.
  3. Наши дни. В ближайшие 10 лет ученые планируют выпустить на рынок растения-вакцины, растения-лекарства и растения-биорекаткоры, которые будут производить компоненты для пластика, красителей и т. д.
Читайте также:  Отдел голосеменные - биология

Даже в животноводстве перспективы биотехнологии поражают. Уже давно создаются животные, которые имеют трансгенный ген, то есть обладают каким-либо функциональным гормоном, например гормон роста.

Но это были лишь начальные эксперименты.

В результате исследований были выведены трансгенные козы, которые могут вырабатывать белок, который останавливает кровотечение у больных, страдающих плохой свертываемостью крови.

В конце 90-х годов прошлого века американские ученые вплотную занялись клонированием клеток эмбрионов животных. Это позволило бы выращивать скот в пробирках, но сейчас этот метод все еще нуждается в доработке.

Зато в ксенотрансплантации (пересадка органов одних видов животным другим) ученые в области прикладной биотехнологии достигли существенного прогресса.

К примеру, в качестве доноров можно использовать свиней с геномом человека, тогда наблюдается минимальный риск отторжения.

Пищевая биотехнология

Как уже было упомянуто, первоначально методы биотехнологических исследований стали применять в пищевом производстве. Йогурты, закваски, пиво, вино, хлебобулочные изделия – это продукты, полученные при помощи пищевой биотехнологии.

Этот сегмент исследования включает в себя процессы, направленные на изменение, улучшение или создание конкретных характеристик живых организмов, в частности бактерий. Специалисты этой области знаний занимаются разработкой новых методик по изготовлению различных продуктов питания.

Ищут и улучшают механизмы и методы их приготовления.

Еда, которую человек ест каждый день, должна быть насыщена витаминами, минералами и аминокислотами. Однако по состоянию на сегодняшний день, согласно данным ООН, существует проблема обеспечения человека продуктами питания. Почти половина населения не имеет должного количества пищи, 500 миллионов голодают, четверть населения планеты питаются недостаточно качественными продуктами.

Сегодня на планете проживает 7,5 миллиарда человек, и если не принимать необходимых действий по повышению качества и количества продуктов питания, если этим не заниматься, то люди в развивающихся странах станут страдать от губительных последствий.

И если можно заменить липиды, минералы, витамины, антиоксиданты продуктами пищевой биотехнологии, то заменить белок практически невозможно. Более 14 миллионов тонн белка каждый год не хватает, чтобы обеспечить потребности человечества. Но здесь на помощь приходят биотехнологии.

Современное белковое производство строится на том, что искусственно формируются белковые волокна. Их пропитывают необходимыми веществами, придают форму, соответствующий цвет и запах. Этот подход дает возможность заменить практически любой белок.

А вкус и вид ничем не отличаются от естественного продукта.

Клонирование

Важной областью знаний в современных биотехнологиях является клонирование. Вот уже на протяжении нескольких десятилетий ученые пытаются создать идентичных потомков, не прибегая к половому размножению. В процессе клонирования должен получиться организм, который похож на родительский не только внешне, но и генной информацией.

В природе процесс клонирования распространен среди некоторых живых организмов. Если у человека рождаются однояйцевые близнецы, то их можно считать естественными клонами.

Впервые клонирование провели в 1997 году, когда искусственно создали овцу Долли. И уже в конце ХХ века ученые стали говорить о возможности клонирования человека. Кроме того, исследовалось такое понятие, как частичное клонирование.

То есть можно воссоздавать не целый организм, а его отдельные части или ткани. Если усовершенствовать этот метод, то можно получить «идеального донора».

Кроме того, клонирование поможет сохранить редкие виды животных или восстановить исчезнувшие популяции.

Моральный аспект

Несмотря на то что основы биотехнологии могут оказать решающее влияние на развитие всего человечества, о таком научном подходе плохо отзывается общественность.

Подавляющая часть современных религиозных деятелей (да и некоторые ученые) пытаются предостеречь биотехнологов от чрезмерного увлечения своими исследованиями.

Особенно остро это касается вопросов генной инженерии, клонирования и искусственного размножения.

С одной стороны, биотехнологии представляются яркой звездой, мечтой и надеждой, которые станут реальными в новом мире. В будущем эта наука подарит человечеству множество новых возможностей.

Станет возможным преодоление смертельных болезней, устранятся физические проблемы, и человек, рано или поздно, сможет достигнуть земного бессмертия. Хотя, с другой стороны, на генофонде может сказаться постоянное употребление генномодифицированных продуктов или появление людей, которых создали искусственно.

Появится проблема изменения социальных структур, и, вполне вероятно, придется столкнуться с трагедией медицинского фашизма.

Вот что такое биотехнология. Наука, которая может подарить блестящие перспективы человечеству путем создания, изменения или улучшения клеток, живых организмов и систем. Она сможет подарить человеку новое тело, и мечта о вечной жизни станет реальностью. Но за это придется заплатить немалую цену.

Источник: https://www.syl.ru/article/364758/chto-takoe-biotehnologiya-istoriya-i-dostijeniya-biotehnologii

Биотехнология. История и достижения

Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX—XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах — химической и информационной технологиях и робототехнике.

История биотехнологии

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности.

Например, такой  биотехнологический процесс, как  брожение с участием микроорганизмов, был известен и широко применялся  еще в древнем Вавилоне, о чем  свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках  Вавилона.

Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895). Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году.

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных.

И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но  и управлять их развитием, особенно у растений.

Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих.

Главная цель применения этих методов – более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека.

В 70-е годы появились и активно развивались такие важнейшие   области биотехнологии, как  генетическая (или генная) и  клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения – это  “старая” биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, – “новая” биотехнология.

Так, в 1814 году петербургский академик К. С.

 Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника).

В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.

Первый антибиотик — пенициллин — удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений.

Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных.

Читайте также:  Разнообразие растений, Биология

Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге.

  Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни.

Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов.

Медицинская генетика объяснила, что причиной многих генных мутаций  является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы  можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и  вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Клонирование –  это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения.

Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма.

То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение  рыцарским званием.

Достижения биотехнологии.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Очень важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений — женьшеня, маслинной пальмы, малины, персиков и др.

Уже многие годы для решения проблемы загрязнения окружающей среды используются биологические методы, разработанные биотехнологами. Так, бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.

Список литературы.

1) Н.А. Лемеза, Л.В.Камлюк Н.Д. Лисов “Пособие по биологии для поступающих в ВУЗы”

Источник: http://kursak.net/biotexnologiya-istoriya-i-dostizheniya/

Этапы развития биотехнологии

Сохрани ссылку в одной из сетей:

Федеральное агентство по здравоохранению и социальному развитию РФ

ГОУ ВПО «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ РОСЗДРАВА»

Кафедра Фармацевтической технологии

Реферат

Этапы развития биотехнологии

Исполнитель:

студентка группы 61

Иванова Жанна Владимировна

Руководитель:

Первушкин С. В.

Самара 2009

Содержание

Введение

Биотехнология — одна из важнейших современных научных дисциплин, необходимых фармацевту, работающему как в лабораториях и цехах предприятий, выпускающих лекарственные средства, так и в аптеках и контрольных учреждениях.

В каждом случае помимо знания общих основ этой науки (и сферы производства) обязательно также глубокое знакомство с теми ее разделами, которые будут наиболее близки профилю работы специалиста.

Знакомство с биотехнологией необходимо всем выпускникам медицинских вузов независимо от их специализации: биотехнологические методы все более интенсивно проникают в практику диагностики, профилактики и лечения различных заболеваний, современные же концепции биотехнологии способствуют формированию мировоззрения человека, адекватного стремительному течению научно-технического прогресса в современном мире.

В общем смысле технология, как правило, связана с производством, целью которого является удовлетворение потребностей человеческого общества. Иногда высказывается мнение, что биотехнология — это осуществление природного процесса в искусственных, созданных человеком условиях.

Однако в последнее десятилетие на основе биотехнологических методов в биореакторах (техногенных нишах) воспроизводятся не только природные, но и не протекающие в природе процессы с использованием ферментов (биокатализаторов — бесклеточных ферментных комплексов), одноклеточных и многоклеточных организмов.

1. Определение биотехнологии

Общепризнано, что содержанием биотехнологии является использование достижений фундаментальных биологических наук в практических целях.

Четверть века назад Европейская федерация по биотехнологии выдвинула следующий тезис: «Биотехнология — применение биологических систем и процессов в промышленности и сфере услуг», не подчеркнув научное содержание биотехнологии; кроме того, слишком широким представляется понятие «сфера услуг».

На одном из конгрессов 10 лет спустя было дано более подробное определение: «Биотехнология — это наука об основах реализации процессов получения с помощью биокатализаторов разных продуктов и об использовании таких процессов при защите окружающей среды», все же неоправданно сужающее ее возможности.

В некоторых учебных пособиях биотехнология трактуется как «направление научно-технического прогресса, использующее биологические процессы и агенты для целенаправленного воздействия на природу, а также в интересах промышленного получения полезных для человека продуктов, в частности лекарственных средств».

Из этого и предыдущих определений следует, что биотехнология — и наука, и сфера производства. Она включает разделы энзимологии, промышленной микробиологии, прикладной биохимии, медицинской микробиологии и биохимии, а также разделы, связанные с конструированием заводского оборудования и созданием специализированных поточных линий.

В современных условиях нередко наблюдается тесное переплетение биотехнологии и биоорганической химии. Так, при получении многих лекарственных веществ используются перемежающиеся этапы био- и органического синтеза с последующей трансформацией целевых продуктов, осуществляемой биологическим или химическим методом.

При обсуждении перспектив биотехнологии и ее стратегических целей все чаще подчеркивается ее связь с молекулярной биологией и молекулярной генетикой.

Широкое распространение получило понятие молекулярной биотехнологии как научной дисциплины, уже в основном сформировавшейся на стыке технологии рекомбинантной ДНК (генетическая или генная инженерия) и традиционных биологических дисциплин, в первую очередь микробиологии, что объясняется техническими причинами более легкого оперирования микробными клетками. Ведется конструирование новых продуцентов биологически активных веществ с помощью технологии рекомбинантной ДНК. В настоящее время бурно развивается и такая область молекулярной генетики как геномика, основная цель которой – полное познание генома, т.е. совокупности всех генов любой клетки, включая клетки человека. Путем секвенирования — установления полной последовательности нуклеотидов в каждом без исключения гене создается своеобразное «досье», отражающее не только видовые, но и индивидуальные особенности организма.

В проблемных научных статьях можно встретить рассчитанные на эффект и свободные от каких-либо догм высказывания о биотехнологии некоторых крупных экспериментаторов, носящие своего рода мировоззренческий характер, например: «Биотехнология — это приближение к Богу».

Здесь подразумевается, что такая кардинальная цель молекулярной биологии и молекулярной генетики как познание генома человека — это заигрывание с Богом, а последующее оперирование геномом, его совершенствование (область биотехнологии) — попытка человека приблизиться по могуществу к Богу.

2. Этапы развития биотехнологии

Читайте также:  История развития эволюционных идей, биология

В развитии биотехнологии выделяют следующие периоды:

эмпирический,

научный,

современный (молекулярный).

Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

1) Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен — приготовление теста, получение молочнокислых продуктов, сыро-, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка растительных волокон).

В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим аппаратом.

Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

2) Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Л. Пастера (1822 — 1895).

Именно Л.Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в производственных условиях брожение (спиртовое, уксусно-, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом.

Практическое значение этих исследований Л. Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с индивидуальным, имеющим точные характеристики биообъектом.

Позднее, приступив к работам в области медицины, Л. Пастер исходил из своей концепции о причине заразных болезней, сводя ее в каждом случае к конкретному, определенному микроорганизму.

Хотя техника того времени не позволяла увидеть возбудителя инфекции, как, например, в случае вируса бешенства, однако Л.Пастер считал, что «мы его не видим, но мы им управляем».

Целенаправленное воздействие на возбудителя инфекции (в целях ослабления его патогенности) позволяет получать вакцины.

Ослабленный патоген и животное, в организм которого он введен, могут рассматриваться как своеобразный биообъект, а получаемая вакцина – как биотехнологический препарат. Л. Пастер создал строго научные основы получения вакцин, тогда как замечательные достижения Э.Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.

3) Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на практическом воплощении этих достижений), выросла из биотехнологии Л.

Пастера и, являясь также строго научной, отличается от последней прежде всего тем, что способна создавать и использовать в производстве неприродные биообъекты, что отражается как на производственном процессе в целом, так и на свойствах новых биотехнологических продуктов.

Говоря о биотехнологии, нельзя не упомянуть публикацию в 953 г. первого сообщения о двуспиральной структуре ДНК, ставшего основополагающим для возникновения указанных фундаментальных дисциплин, достижения которых реализуются в современной биотехнологии.

В результате серий публикаций в 1960-х гг. в литературу были внедрены принципиально важные для биотехнолога понятия «оперон» и «структурный ген».

В 1973 г. было опубликовано сообщение об успешном переносе генов из одного организма в другой — в сущности, уже о технологии рекомбинантной ДНК, определяющей возникновение генетической инженерии.

В 1980 г. Верховный суд США признал, что генно-инженерные микроорганизмы могут быть запатентованы, а развитие биотехнологических методов получило юридический статус.

В 1990 г. произошли два принципиально важных события: была разрешена генотерапия (но только применительно к соматическим клеткам человека, т.е. без передачи чужого гена потомству) и утвержден международный проект «Геном человека». Образно говоря, человеку было юридически разрешено познавать свою сущность.

В настоящее время интенсивно растет количество таких успешно применяемых в медицине биотехнологических продуктов, как рекомбинантные белки, вторичные метаболиты микроорганизмов и растений, а также полусинтетических лекарственных агентов, являющихся продуктами одновременно био- и оргсинтеза.

В последние годы родилась новая отрасль генетики – геномика, изучающая не отдельные гены, а целые геномы.

Достижения молекулярной биологии и генной инженерии дали человеку возможность читать генетические тексты вначале вирусов, бактерий, дрожжевых грибков, многоклеточных животных.

Например, знание геномной структуры патогенных бактерий очень важно при создании рационально сконструированных вакцин, для диагностики и других медицинских целей.

Апрель 2003 года ознаменовался сенсацией в биологии и медицине: Международный консорциум по составлению генетической карты человека (Центр геномного секвенирования: Вашингтонский университет и Сенгеровский центр в Кембридже) опубликовал заявление, что удалось полностью расшифровать геном человека.

Титанический труд сотен исследователей из США, Великобритании, Германии, Франции, Японии и Китая занял более 10 лет и обошелся почти в 3 млрд долларов.

При этом были разработаны высокоэффективные технологии и инструменты картирования, такие как коллекции клеток, в которых есть небольшие фрагменты каждой из хромосом или искусственные дрожжевые хромосомы, содержащие крупные фрагменты хромосом человека, бактериальные и фаговые векторы, позволяющие размножить (клонировать) фрагменты ДНК человека.

Быстро прогрессировала техника секвенирования (например, многоканальный капиллярный электрофорез ускорил и удешевил расшифровку первичной структуры ДНК). Созданы компьютерные программы, позволяющие находить гены в расшифрованных участках ДНК.

3. История развития биотехнологии (даты, события)

1917 – введен термин биотехнология;

– произведен в промышленном масштабе пенициллин;

– показано, что генетический материал представляет собой ДНК;

1953 – установлена структура инсулина, расшифрована структура ДНК;

1961 – учрежден журнал «Biotechnology and Bioengineering»;

1961-1966 – расшифрован генетический код, оказавшийся универсальным для всех организмов;

1953 – 1976 – расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;

1963 – осуществлён синтез биополимеров по установленной структуре;

1970 – выделена первая рестрикционная эндонуклеаза;

– осуществлён синтез ДНК;

1972 – синтезирован полноразмерный ген транспортной РНК;

1975 – получены моноклональные антитела;

1976 – разработаны методы определения нуклеотидной последовательности ДНК;

1978 – фирма «Genentech» выпустила человеческий инсулин, полученный с помощью Е. соli;

– синтезированы фрагменты нуклеиновых кислот;

– разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК;

1983 – гибридные Ti – плазмиды применены для трансформации растений;

1990 – официально начаты работы над проектом «геном человека»;

1994 – 1995 – опубликованы подробные генетические и физические карты хромосом человека;

1996 – ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд долларов;

1997 – клонировано млекопитающее из дифференцированной соматической клетки;

2003 – расшифрован геном (набор генов, присущий организму) человека, содержащий приблизительно 30 тысяч генов и три миллиарда «букв» молекул ДНК.

Заключение

В настоящее время биотехнология решает проблемы не только медицины или создания пищевых продуктов путем ферментации (традиционной области ее применения); с ее помощью ведется, например, разработка полезных ископаемых, решается проблема энергоресурсов, ведется борьба с нарушениями экологического равновесия и т.

д. В некоторых странах (например, Японии) биотехнология объявлена «стратегической индустрией», а в других (например, Израиле) включена в число научных направлений с указанием «национальный приоритет». В США число биотехнологических фирм за 1985 — 2005 гг. достигло полутора тысяч. В Европе их несколько сотен.

Характерен рост числа специализированных периодических изданий по биотехнологии, выпускаемых в разных странах, международных и региональных биотехнологических конгрессов и конференций.

Список литературы

  1. www.biotechprogress.ru

  2. www.rusbiotech.ru/spec/show.php?id=1719

  3. Албертс Б., Брэй Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир, 1994 г., 444 с.

  4. Бейли Дж., Оллис Д. Основы биохимической инженерии. В 2-х томах. М.: Мир, 1989 г.

  5. Биотехнология: Учебное пособие для ВУЗов /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987.

  6. Грачева И.М., Кривова А.Ю. Технология ферментных препаратов. М.: Элевар, 2000 г., 512 с.

  7. Манаков М.Н., Победимский Д.Г. Теоретические основы технологии микробиологических производств. М.: Агропромиздат, 1990 г., 272 с.

  8. Матвеев В.Е. Научные основы микробиологической технологии. М.: Агропромиздат, 1985 г., 224 с.

  9. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

  10. Сазыкин О.Ю. Биотехнология: учеб. пособие для студентов высш. учеб. заведений / Ю.О. Сазыкин, С.Н. Орехов, И.И. Чакалева; под ред. А.В. Катлинского. – 3-е изд., стер. – М. : Издательский центр «Академия», 2008.

  11. Щелкунов С.А. Генетическая инженерия. Ч.1. Новосибирск: НГУ, 1994 г.

Источник: http://works.doklad.ru/view/1_vXCZ8OIBo.html

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]