Ген и хромосомная теория наследственности – биология

48. Хромосомная теория наследственности

Ген и хромосомная теория наследственности - биология

Хромосомная теория наследственности — теория, согласно которой передача наследственной информации в ряду поколений связана с передачей хромосом, в которых в определённой и линейной последовательности расположены гены. Эта теория сформулирована в начале XX века, основной вклад в её создание внесли американский цитолог У. Сеттон, немецкий эмбриолог Т. Бовери и американский генетик Т. Морган.

В 1902-1903 годах У. Сеттон и Т. Бовери независимо друг от друга выявили параллелизм в поведении менделевских факторов наследственности (генов) и хромосом.

Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Экспериментальное доказательство локализации генов в хромосомах было получено позднее Т.

Морганом и его сотрудниками, работавшими с плодовой мушкой Drosophila melanogaster. Начиная с 1911 года, эта группа опытным путём доказала:

  • что гены располагаются в хромосомах линейно;
  • что находящиеся на одной хромосоме гены наследуются сцепленно;
  • что сцепленное наследование может нарушаться за счёт кроссинговера.

Начальным этапом создания хромосомной теории наследственности можно считать первые описания хромосом во время деления соматических клеток, сделанных во второй половине XIX века в работах И.Д. Чистякова (1873), Э.

Страсбургера (1875) и О. Бючли (1876). Термина «хромосома» тогда ещё не существовало, и вместо него говорили о «сегментах», на которые распадается хроматиновый клубок, или о «хроматиновых элементах».

Термин «хромосома» был предложен позднее Г. Вальдейером.

Параллельно с изучением соматических митозов шло и изучение процесса оплодотворения, как в животном, так и в растительном царстве. Слияние семенного ядра с яйцевым впервые наблюдал у иглокожих О.

Хертвиг (1876), а среди растений у лилейных Страсбургер (1884).

Именно на основании этих наблюдений в 1884 году оба они пришли к выводу, что клеточное ядро является носителем наследственных свойств организма.

Центр внимания с ядра, как целого, на его отдельные хромосомы был перенесён лишь после того, как появилась чрезвычайно важная для того времени работа Э. ван Бенедена (1883).

Ему при изучении процесса оплодотворения у аскариды, имеющей очень малое число хромосом — всего 4 в соматических клетках, удалось подметить, что хромосомы в первом делении оплодотворённого яйца происходят наполовину из ядра сперматозоида и наполовину — из ядра яйцеклетки. Таким образом:

  • во-первых, был открыт факт, что половые клетки имеют вдвое меньшее количество хромосом по сравнению с соматическими клетками,
  • а во-вторых, был впервые поставлен вопрос о хромосомах, как особых постоянных сущностях в клетке.

Следующий этап связан с развитием концепции индивидуальности хромосом. Одним из первых шагов было установление того, что соматические клетки разных тканей одного и того же организма обладают одинаковым числом хромосом. Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

В экспериментах он использовал плодовую мушку-дрозофилу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

Морган и его ученики установили следующее:

  • Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно.
  • Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей.
  • Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов.
  • Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.

Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности.

 Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

  • Гены находятся в хромосомах.
  • Гены расположены в хромосоме в линейной последовательности.
  • Различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
  • Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

Источник: https://vseobiology.ru/genetika/1489-48-khromosomnaya-teoriya-nasledstvennosti

Хромосомная теория наследственности

После того, как в генетике утвердилось понятие о наследственных факторах, были проведены исследования с целью определить, с какими клеточными структурами они связаны.

Факты, установленные генетическими и цитологическими работами еще в начале текущего столетия, показывали, что носители наследственных факторов (генов) — хромосомы.

В результате дальнейшего развития генетики появилась хромосомная теория наследственности. Создатель ее — американский генетик Т. Морган.

Ученый проводил исследования на плодовой мушке дрозофиле, которую можно легко разводить в пробирках. У этой мушки очень короткий цикл развития: в течение двух недель из оплодотворенного яйца через промежуточные стадии личинки и куколки развивается взрослая особь, способная сразу же давать потомство. Одна оплодотворенная самка может дать несколько сот новых насекомых.

Дрозофила имеет большое число хорошо отличимых признаков, наследование которых легко наблюдать при различных видах скрещиваний. В соматических клетках у нее всего четыре пары хромосом.

Вследствие названных особенностей дрозофила оказалась очень удобным объектом для генетических исследований. На основе опытов с ней были разработаны многие важнейшие вопросы общей генетики.

Многочисленные лабораторные опыты, проведенные Т. Морганом, показали, что гены, находящиеся в одной хромосоме, наследуются, как правило, совместно, то есть оказываются сцепленными и поэтому не подчиняются установленному Г. Менделем правилу независимого комбинирования.

В одном из опытов Т. Моргана дрозофила, имевшая серую окраску тела и длинные крылья, была скрещена с особью, имевшей черную окраску тела и рудиментарные (укороченные) крылья. Первое поколение мух было с серым телом и длинными крыльями.

При скрещивании этих гибридов между собой в F2 не произошло независимого распределения признаков по двум аллельным парам (серое тело — черное тело, длинные крылья — рудиментарные крылья) в отношении 9:3:3:1.

Среди гибридов F1 преобладающее число особей унаследовало такую же комбинацию признаков, какой она была у родительских форм (серые длиннокрылые и черные короткокрылые), и лишь очень небольшая часть мух была с перекомбинированными признаками (серые короткокрылые и черные длиннокрылые).

Читайте также:  Деятельность человека в необычных условиях, биология

Этот пример показывает, что гены, обусловливающие признаки серого тела и длинных крыльев и черного тела и коротких крыльев, наследуются преимущественно вместе.

На основании этого и большого числа подобных опытов Т. Морган пришел к выводу, что материальная основа сцепления генов — хромосома. Каждая из хромосом по своей длине неоднородна, она состоит из отдельных элементарных наследственных единиц — генов.

У любого вида организмов их всегда во много раз больше, чем хромосом. Следовательно, в каждой хромосоме находится определенное число генов, которые наследуются совместно, образуя, так называемые группы сцепления.

Число групп сцепления соответствует числу пар гомологичных хромосом.

Изучая явление сцепления генов, Т. Морган и его ученики установили, что сцепление почти никогда не бывает полным.

В разбираемом примере оно также не было полным, поскольку в небольшом числе случаев отмечена перекомбинация генов.

Если гены разных аллельных пар лежат в одной и той же хромосоме, то есть сцеплены, то единственной причиной их перекомбинации может быть процесс конъюгации гомологичных хромосом в профазе мейоза.

Во время конъюгации парные хромосомы сближаются и прикладываются одна к другой гомологичными участками, образуя биваленты (четверки хроматид).

В это время между хроматидами может происходить обмен гомологичными участками. Этот процесс получил название перекреста хромосом или кроссинговера (от англ. кроссинг — перекрещивание).

Показана схема перекреста хромосом и рекомбинации находящихся в них генов. Две парные хромосомы в результате перекреста и последующего разрыва обмениваются участками. Два гена А к В, расположенные первоначально в одной хромосоме, в результате кроссинговера оказываются в разных хромосомах и попадают в разные гаметы.

Гаметы с хромосомами, претерпевшими кроссинговер, называются кроссоверными, а гаметы, образованные хромосомами без кроссинговера, — некроссоверными. Соответственно этому и особи, возникшие с участием кроссоверных гамет, называются кроссоверными, или рекомбинантными, а образованные без них — некроссоверными, или нерекомбинантными.

Рекомбинация генов в процессе скрещивания приводит к новообразованиям. Возникают гибридные формы, представляющие исходный материал для отбора и создания новых сортов растений и пород животных. Образование гибридных форм в природе дает материал для естественного отбора, поэтому имеет важнейшее значение в эволюции живых организмов.

Таким образом, перекомбинация генов в процессе мейоза осуществляется двумя путями — случайным расхождением негомологичных хромосом (правило независимого комбинирования по Г. Менделю) и процессом перекреста гомологичных хромосом (явление кроссинговера, установленное Т. Морганом).

В итоге разбора основных положений хромосомной теории наследственности можно сделать следующие выводы.

  1. Гены находятся в хромосомах, расположены линейно и образуют группу сцепления.
  2. Гены, локализованные в одной хромосоме, наследуются сцепленно; сила этого сцепления зависит от расстояния между генами.
  3. Между гомологичными хромосомами наблюдается перекрест, в результате которого происходит рекомбинация генов, имеющая важное значение как источник материала для естественного и искусственного отбора.
  4. Сцепление генов и их рекомбинация в результате перекреста — закономерные биологические явления, в которых выражается единство процессов наследственности и изменчивости организмов.

Источник: http://www.activestudy.info/xromosomnaya-teoriya-nasledstvennosti/

§ 44. Сцепленное наследование. Хромосомная теория наследственности

Сцепленное наследование. Г. Мендель опубликовал результаты своих исследований в 1865 г., однако тогда его открытия остались незамеченными. Только в 1900 г. К-Корренс (Германия), Г. де Фриз (Голландия) и Э.

Чер мак (Австрия) независимо друг от друга обнаружили у разных видов растений те же закономерности наследования признаков, что и Г. Мендель. Английский генетик У. Бэтсон подтвердил законы Менделя на животных.

Переоткрытие законов Менделя вызвало глубокий интерес к изучению закономерностей наследования признаков и способствовало быстрому развитию генетики.

В 1902 г. немецкий цитолог и эмбриолог Т. Б о в е р и представил доказательства участия хромосом в процессах передачи наследственной информации. Он показал, например, что нормальное развитие морского ежа возможно лишь при наличии всех хромосом. Подобную связь заметил в 1903 г. и американский цитологУ. С эттон. Так получили обоснование предположения Менделя

о наследственных факторах, о наличии одинарного набора этих факторов в гаметах и двойного — в зиготах. В 1909 г. датский биолог В. Иогансен ввел понятие s.ген:/.

В 1910 г. американский генетик Т. Морган экспериментально доказал, что гены расположены в хромосомах.

Многочисленные исследования Моргана и его учеников привели к целому ряду важнейших открытий, которые легли в основу хромосомной теории наследственности.

Одно из ее положений можно сформулировать следующим образом: гены расположены в хромосомах в линейном порядке и занимают определенные участки — локусы, причем аллельные гены находятся в одинаковых локусах гомологичных хромосом.

Закон независимого наследования (третий закон Менделя) справедлив в том случае, если неаллельные гены находятся в разных парах хромосом. Однако количество генов у живых организмов значительно больше числа хромосом. Например, у человека около 25 тыс. генов, а количество хромосом —

23 пары (2п = 46); у плодовой мушки дрозофилы приблизительно 14 тыс. генов и всего 4 пары хромосом (2п = 8). Следовательно, каждая хромосома содержит множество генов. Будут ли гены, локализованные в одной хромосоме, наследоваться независимо? Очевидно, что нет.

Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т.

Морган предложил называть сцепленным наследованием (в отличие от независимого).

Каждая пара гомологичных хромосом содержит гены, контролирующие одни и те же признаки, поэтому количество групп сцепления равно числу пар хромосом. Например, у человека 23 группы сцепления, а у дрозофилы — 4.

Вам известно, что при независимом наследовании дигетерозиготная особь, например =^=, образует четыре типа гамет в равном соотношении, т. е. по 25 %: Л В, АЬ, а В и ab. Это обусловлено тем, что неаллельные гены находятся в разных парах хромосом. Если же они расположены в гомологичных хромосомах, следовало бы ожидать, что дигетерозигота будет производить лишь два типа га-

ab

мет: 50 % АВ и 50 % ab (обратите внимание на то, что сцепленные гены записываются в одну хромосому).

Однако Т. Морган обнаружил, что в большинстве случаев дигетерозиготные особи образуют не два, а четыре типа гамет. Помимо ожидаемых АВ и ab формируются также гаметы с новыми комбинациями генов: АЬ и аВ, только в меньшем процентном соотношении. Рассмотрим один из экспериментов Т. Моргана, в котором изучалось наследование сцепленных генов у дрозофилы.

Если почистить фрукты или овощи и не сразу выбросить очистки либо оставить фрукты на столе на несколько дней, то можно заметить, как вокруг остатков пищи начнут роиться маленькие мушки размером около 2—3,5 мм. Это дрозофилы — плодовые мушки, род насекомых отряда Двукрылые (рис. 95).

Обычно дрозофилы имеют красные глаза и желтокоричневую окраску брюшка. Жизненный цикл дрозофил короток: развитие от яйца до половозрелой особи при 25 °С занимает 10 дней. Небольшие размеры, высокая плодовитость, простота культивирования и ряд других особенностей на долгое время сделали дрозофилу главным объектом генетики.

Не один нобелевский лауреат, кроме своего интеллекта, обязан ей своими научными достижениями.

Читайте также:  Класс Ракообразные. Отряды: Десятиногие, Равноногие, Веслоногие, Ветвистоусые и Карпоеды. Строение и размножение речного рака

Путем скрещивания чистой линии дрозофил, имеющих серое тело и нормальные (длинные) крылья, с чистой линией, особи которой имели черное тело и зачаточные крылья, были получены гибриды первого поколения (рис. 96).

Все они в соответствии с законом единообразия были серыми с нормально развитыми крыльями. Следовательно, у дрозофил серое тело (А) полностью доминирует над черным (а), а нормальные крылья (В) — над зачаточными (b).

Все гибриды первого поколения — дигетерозиготы.

Затем было проведено анализирующее скрещивание (рис. 97). Дигетерозиготную самку из гибридного поколения скрестили с рецессивным дигомозиготным самцом (черное тело и зачаточные крылья).

В потомстве было получено по 41,5 % особей с серым телом, нормальными крыльями и черным телом, зачаточными крыльями, а также по 8,5 % мух с серым телом, зачаточными крыльями и черным телом, нормальными крыльями.

Если бы гены, определяющие цвет тела и развитие крыльев, находились в разных парах хромосом, соотношение фенотипических классов было бы равным — по 25 %. Но этого не наблюдалось, значит, гены находятся в гомологичных хромосомах и наследуются сцепленно.

Несмотря на сцепление генов, АВ самка производила не два, а четыре типа гамет. Однако гамет с исходными сочетаниями сцепленных генов формировалось намного больше (АВ и ab вместе составили 83 %), чем с новыми их сочетаниями (сумма АЬ и дВ равна 17 %).

Было выяснено, что причиной появления хромосом с новыми комбинациями родительских генов является кроссинговер. Вы помните, что этот процесс происходит в профазе I мейоза и представляет собой обмен соответствующими участками между гомологичными хромосомами.

Таким образом, кроссинговер препятствует полному (абсолютному) сцеплению генов. Гаметы, которые образуются в результате кроссинговера, и особи, которые развиваются при участии таких гамет, называются кроссоверными или рекомбинантными.

В рассмотренном эксперименте гаметы АЬ и аВ являлись кроссоверными, а гаметы АВ и ab — некроссоверными (см. рис. 97).

Кроссинговер между конкретными сцепленными генами происходит с определенной вероятностью (частотой). Для расчета частоты кроссинговера (rf, от англ. recombination frequency — частота рекомбинации) можно пользоваться следующей формулой:

Таким образом, между генами А и В, контролирующими цвет тела и длину крыльев дрозофилы, кроссинговер происходит с частотой: rfAB= 17 %.

Дальнейшие исследования, проведенные Т. Морганом и его сотрудниками, показали, что частота кроссинговера пропорциональна расстоянию между генами, расположенными в одной хромосоме.

Чем больше расстояние между сцепленными генами, тем чаще между ними происходит кроссинговер. И наоборот, чем ближе друг к другу расположены гены, тем меньше частота кроссинговера между ними.

Чем объясняется эта закономерность?

В профазе I мейоза при конъюгации гомологичных хромосом образование перекрестов между хроматидами осуществляется произвольно, на любых соответствующих участках. Рассмотрим рисунок 98.

Гены А и В (или а. и Ь) находятся сравнительно близко друг к другу. Вероятность того, что перекрест произойдет именно на участке, разделяющем эти гены, невелика.

Гены А и D (или а. и d) располагаются на значительном расстоянии друг от друга. Поэтому вероятность того, что хроматиды перекрестятся на каком-либо участке между ними, намного выше.

Значит, чем больше расстояние между генами, тем чаще они разделяются при кроссинговере.

Таким образом, частота кроссинговера позволяет судить о расстоянии между генами. В честь Т. Моргана единица измерения расстояния между генами получила название моргай и да или, что то же самое, санти моргай и да (сМ).

Морганида (сантиморганида, сМ) — это генетическое расстояние, на котором кроссинговер происходит с вероятностью 1 %.

Биологическое значение кроссинговера чрезвычайно велико. В результате этого процесса возникают новые комбинации родительских генов, что повышает генетическое разнообразие потомства и расширяет возможности адаптации организмов к различным условиям окружающей среды.

Генетические карты. Т. Морган и сотрудники его лаборатории показали, что знание частоты кроссинговера между сцепленными генами позволяет строить генетические карты хромосом. Генетическая карта представляет собой схему взаимного расположения генов, находящихся в одной группе сцепления, с учетом расстояний между ними (рис. 99).

Генетические карты хромосом уже составлены для человека, многих видов животных, растений, грибов и микроорганизмов. Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес.

Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что широко применяется в селекционной практике.

Генетические карты хромосом человека используются в медицине для диагностики и лечения ряда наследственных заболеваний.

Основные положения хромосомной теории наследственности.

1.  Гены в хромосомах расположены линейно, в определенной последовательности. Аллельные гены находятся в одинаковых локусах гомологичных хромосом.

2.  Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Количество групп сцепления равно числу пар хромосом.

3.  Сцепление генов может нарушаться в результате кроссинговера, происходящего при конъюгации гомологичных хромосом в профазе I мейоза.

4.  Частота кроссинговера пропорциональна расстоянию между генами: чем больше расстояние, тем выше частота кроссинговера, и наоборот.

Б. За единицу расстояния между сцепленными генами принята 1 морганида — расстояние, на котором кроссинговер происходит с вероятностью 1 %.

1.  Всегда ли соблюдается III закон Г. Менделя? В каких случаях гены наследуются независимо, а в каких случаях — сцепленно?

2.  Что такое группа сцепления? Чему равно количество групп сцепления в клетках разных организмов?

3.  Почему частота кроссинговера между сцепленными генами зависит от расстояния между ними?

4.  Что такое генетические карты хромосом? Каковы перспективы их использования?

5.  Сформулируйте основные положения хромосомной теории наследственности.

6.  Какие типы гамет и в каком процентном соотношении будут формировать дигетерозиготные особи – и ——, если известно, что расстояние между генами А и В составляет 20 морган ид?

7.  Серый цвет тела у дрозофилы доминирует над желтым, красные глаза — над гранатовыми. Гены, отвечающие за эти признаки, локализованы в первой паре хромосом и находятся на расстоянии 44 морганиды.

Скрестили чистые линии серотелых мух с гранатовыми глазами и желтотелых с красными глазами. Из полученных гибридов выбрали самку и подвергли ее анализирующему скрещиванию.

Каким будет процентное соотношение фенотипических классов в потомстве?

8.  У одного из видов растений рассеченные листья доминируют над цельными, а синяя окраска цветков — над розовой.

В результате анализирующего скрещивания было получено потомство четырех фенотипических классов: 1) 133 растения с рассеченными листьями и синими цветками; 2) 362 растения с рассеченными листьями и розовыми цветками; 3) 127 растений с цельными листьями и розовыми цветками; 4) 378 растений с цельными листьями и синими цветками.

Затем растения первого фенотипического класса скрестили с растениями второго фенотипического класса. Сколько процентов полученных гибридов будут иметь рассеченные листья и розовые цветки? Цельные листья и синие цветки?

Биология: учеб. для 10-го кл. учреждений общ. сред, образования с рус. яз. обуч. / Н. Д. Лисов [и др.]; под ред. Н. Д. Лисова. — 3-е изд., перераб. — Минск : Народная асвета, 2014. — 270 с.: ил.

Источник: https://botana.cc/uchebnik/biologiya/10/by001/p044.html

Хромосомная теория наследственности

1) Гены находятся в хромосомах.

2) Гены в хромосомах расположены линейно друг за другом и не перекрываются.

3) Гены, расположенные в одной хромосоме, называются сцепленными и составляют группу сцепления.

Поскольку в гомологичные хромосомы входят аллельные гены, отвечающие за развитие одних и тех же признаков, в группу сцепления включают обе гомологичные хромосомы; таким образом, количество групп сцепления соответствует числу хромосом в гаплоидном наборе. В пределах каждой группы сцепления вследствие кроссинговера происходит перекомбинирование генов.

4) Закон Моргана – «Гены, расположенные в одной хромосоме, наследуются совместно».

Полное сцепление генов. Если гены расположены в хромосоме непосредственно друг за другом, то кроссинговер между ними практически невероятен. Они почти всегда наследуются вместе, и при анализирующем скрещивании наблюдается расщепление в соотношении 1:1

Неполное сцепление генов. Если гены в хромосомах расположены на некотором расстоянии друг от друга, то частота кроссинговера между ними возрастает и, следовательно, появляются кроссоверные хромосомы, несущие новые комбинации генов: Аb и аВ

https://www.youtube.com/watch?v=hG5nq-54tSM

Их количество прямо пропорционально расстоянию между генами. При неполном сцеплении в потомстве появляется некоторое количество кроссоверных форм, причем их количество зависит от расстояния между генами. Процент кроссоверных форм указывает на расстояние между генами, расположенными в одной хромосоме.

Взаимодействия неаллельных генов

Комплементарность – явление при котором ген одной аллельной пары способствует проявлению генов другой аллельной пары.

1) У душистого горошка есть ген А, обусловливающий синтез бесцветного предшественника пигмента – пропигмента.

Ген В определяет синтез фермента, под действием которогo из пропигмента образуется пигмент.

Цветки душистого горошка с генотипом ааВВ и АаЬЬ имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором – есть пропигмент. но нет фермента, переводящего пропигмент в пигмент:

2) Новообразование признака – наследование формы гребня у кур некоторых пород. В результате различных комбинаций генов возникают четыре варианта формы гребня:

Pиc. Форма гребня у петухов: А – простой (aabb); Б – гороховидный (ааВВ или ааВВ); В – ореховидный (ААВВ или АаВЬ); Г – розовидный (ААЬЬ или Aabb)

Эпистаз – явление, при котором ген одной аллельной пары препятствует проявлению генов из другой аллельной пары, например развитие окраски плодов у тыквы.

Окрашенными плоды тыквы будут только в том случае, если в генотипе-растении отсутствует доминантный ген В из другой аллельной пары.

Этот ген подавляет развитие окраски, у плодов тыквы, а его рецессивная аллель b не мешает окраске развиваться (Aabb – желтые плоды; aabb – зеленые плоды; ААВВ и ааВВ – белые плоды).

Полимерия – явление, при котором степень выраженности признака зависим от действия нескольких различных пар аллельных генов причем чем больше в генотипе доминантных генов каждой пары, тем ярче выражен признак. У пшеницы красный цвет зерен определяется двумя генами: a1, a2;.

Неаллельные гены обозначены здесь одной буквой А(а) потому, что определяют развитие одного признака. При генотипе А1А1А2А2 окраска зерен наиболее интенсивная, при генотипе а1а1а2а2 они имеют белый цвет.

В зависимости от числа доминантных генов в генотипе можно получить все переходы между интенсивно красной и белой окраской:

Рис. 26. Наследование окраски зерен пшеницы (полимерия)

Источник: https://www.examen.ru/add/manual/school-subjects/natural-sciences/genetics/xromosomnaya-teoriya-nasledstvennosti/

2.2 Хромосомная теория наследственности Т. Моргана. Понятие о гене

В 1900 году независимо друг от друга трое ботаников — К. Корренс (Германия), Г. де Фриз (Голландия) и Э. Чермак (Австрия) обнаружили в своих опытах открытые ранее Менделем закономерности. Затем, натолкнувшись на его работу, они вновь опубликовали ее в 1901 году. Это способствовало глубокому интересу к количественным закономерностям наследственности.

К тому времени цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Подобную связь усмотрел в 1903 году В. Сэтгон. Получили обоснование воззрения Менделя о наследственных факторах, о наличии одинарного набора факторов в гаметах и двойного — в зиготах. Годом ранее Т.

Бовери представил доказательства в пользу участия хромосом в процессах наследственной передачи. Он показал, например, что нормальное развитие морского ежа возможно лишь при наличии всех хромосом.

Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттон и Бовери положили начало новому направлению генетики — хромосомной теории наследственности.

Хромосомная теория наследственности, одно из обобщений в генетике, утверждающее, что наследственные факторы (гены) расположены в хромосомах, передача которых от родителей потомкам обеспечивает в поколениях преемственность свойств и признаков у особей одного вида. Основы хромосомной теории заложили работы немецкого биолога Т.

Бовери (1902-1907) и американского цитолога У. Сеттона (1902-1903), которые независимо друг от друга предположили, что гены расположены в хромосомах, и связали закономерности Менделя, описывавшие поведение наследственных факторов, с поведением хромосом во время мейоза и при оплодотворении.

Таким образом, были вскрыты соответствия в данных генетики и цитолог ии. Детальная разработка хромосомной теории была произведена Т. Морганом и его учениками (начиная с 1910 г.).

Изучая наследование окраски глаз у плодовой мушки дрозофилы, Морган показал, что цвет глаз – признак, сцепленный с полом, и что по характеру его наследования ген, определяющий этот признак, должен находиться в половой хромосоме (Х-хромосоме). Так экспериментально была доказана связь конкретного гена с конкретной хромосомой.

В дальнейшем было установлено, что многие признаки наследуются совместно – как один комплекс. Это означало, что контролирующие их гены образуют группы сцепления. Число таких групп сцепления оказалось равным гаплоидному числу хромосом, постоянному для каждого вида организмов.

Затем Морган обнаружил, что сцепленное наследование признаков может нарушаться в результате кроссинговера во время мейоза.

На основании детального исследования сцепления генов и кроссинговера (на материале различных мутаций у дрозофилы) Морган и его сотрудники разработали методы определения взаимного положения различных генов на хромосомах и построения генетических карт хромосом.

Хромосомная теория нашла подтверждение и дальнейшее развитие в открытии химической природы гена, выяснении строения хромосом и в других достижениях молекулярной генетики.

В кратце, основные положения хромосомной теории наследственности таковы.

Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах. Гены расположены в хромосоме в линейной последовательности.

Гены одной хромосомы образуют группу сцепления, благодаря нему происходит сцепленное наследование некоторых признаков. При этом сила сцепления находится в обратной зависимости от расстояния между генами.

Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

Итак, хромосомная теория строилась на следующих исходных абстракциях: хромосома состоит из генов; гены расположены на хромосоме в линейном порядке; ген — неделимая корпускула наследственности, “квант”; в мутациях ген изменяется как целое. Эта теория была первой обстоятельной попыткой теоретической конкретизации идей, заложенных в законах Менделя.

Источник: http://bio.bobrodobro.ru/8556

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]