Уровни организации жизни – биология

Основные уровни организации живого | Биология

Уровни организации жизни - биологияУровни организации живого

Жизнь является многоуровневой системой (от греч. система — объединение, совокупность). Выделяют такие основные уровни организации живого: молекулярный, клеточный, органно-тканевой, организменный, популяционно-видовой, экосистемный, биосферный. Все уровни тесно связаны между собой и возникают один из другого, что свидетельствует о целостности живой природы.

Молекулярный уровень организации живого

Это единство химического состава (биополимеры: белки, углеводы, жиры, нуклеиновые кислоты), химических реакций. С этого уровня начинаются процессы жизнедеятельности организма: энергетический, пластический и прочие обмены, изменение и реализация генетической информации.

Клеточный уровень организации живого

Клетка является элементарной структурной единицей живого. Это единица развития всех живых организмов, живущих на Земле. В каждой клетке происходят процессы обмена веществ, преобразования энергии, обеспечивается сохранение, преобразование и передача генетической информации.

Каждая клетка состоит из клеточных структур, органелл, которые выполняют определенные функции, поэтому возможно выделить субклеточный уровень.

Органно-тканевой уровень организации живого

Клетки многоклеточных организмов, которые выполняют подобные функции, имеют одинаковое строение, происхождение, объединяются в ткани. Различают несколько типов тканей, которые имеют отличия в строении и выполняют разные функции (тканевой уровень).

Ткани в разном соединении образуют разные органы, которые имеют определенное строение и выполняют определенные функции (органный уровень).

Органы объединяются в системы органов (системный уровень).

Организменный уровень организации живого

Ткани объединяются в органы, системы органов и функционируют как единое целое — организм. Элементарной единицей этого уровня является особь, которая рассматривается в развитии от момента зарождения до конца существования как единая живая система.

Популяционно-видовой уровень организации живого

Совокупность организмов (особей) одного вида, имеющего общее место обитания, образует популяции. Популяция является элементарной единицей вида и эволюции, так как в ней происходят элементарные эволюционные процессы, этот и следующие уровни — надорганизменные.

Экосистемный уровень организации живого

Совокупность организмов разных видов и уровней организации образует этот уровень. Здесь можно выделить биоценотический и биогеоценотический уровни.

Популяции разных видов взаимодействуют между собой, образуют многовидовые группировки (биоценотический уровень).

Взаимодействие биоценозов с климатическими и другими небиологическими факторами (рельефом, почвой, соленостью и т. п.) приводит к образованию биогеоценозов (биогеоценотический). В биогеоценозах происходит поток энергии между популяциями разных видов и круговорот веществ между его неживой и живой частями.

Биосферный уровень организации живого

Представлен частью оболочек Земли, где существует жизнь, — биосферой. Биосфера состоит из совокупности биогеоценозов, функционирует как единая целостная система.

Не всегда можно выделить весь перечисленный набор уровней. Например, у одноклеточных клеточный и организменный уровни совпадают, а органно-тканевой уровень отсутствует. Иногда можно выделить дополнительные уровни, например, субклеточный, тканевой, органный, системный.

Молекулярный уровеньУровни организации живого

Источник: https://xn—-9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/urovni-organizatsii-zhivogo/

1.3. Уровни организации живой природы

Уровни организации живых систем  отражают соподчиненность, иерархичность структурной организации жизни; отличаются друг от друга сложностью организации системы (клетка устроена проще по сравнению с многоклеточным организмом или популяцией).

Уровень жизни – это форма и способ ее существования (вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку – форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма, где он размножается – способ его существования).

  Уровни организации Биологи-ческая система Компоненты, образующие систему Основные процессы
1.Молекулярно-генетический уровень    Молекула Отдельные биополимеры (ДНК, РНК, белки, липиды, углеводы и др.); На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.
2.Клеточный Клетка Комплексы молекул химических соединений и органоиды клетки Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы
3.Тканевый Ткань Клетки и межклеточное вещество Обмен веществ; раздражимость
4.Органный Орган Ткани разных типов Пищеварение; газообмен; транспорт веществ; движение и др.
5. Организменный Организм Системы органов Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания
6. Популяционно-видовой Популяция Группы родственных особей, объединенных определенным генофондом и специфическим взаимо-действием с окружающей средой Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды
7.Биогеоцено-тический Биогеоценоз Популяции разных видов; факторы среды; пространство с комплексом условий среды обитания Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами
8.Биосферный Биосфера Биогеоценозы и антропогенное воздействие Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы

Уровни организации структуры тела на современном этапе эволюции

ТЕМАТИЧЕСКИЕ  ЗАДАНИЯ  

Часть А

А1. Уровень, на котором изучаются процессы биогенной миграции атомов, называется:

1) биогеоценотический      2) биосферный3) популяционно-видовой     

4) молекулярно-генетический

А2. На популяционно-видовом уровне изучают:

1) мутации генов2) взаимосвязи организмов одного вида3) системы органов      

4) процессы обмена веществ в организме

А3. Поддержание относительного постоянства химического состава организма называется

1) метаболизм 2) ассимиляция 3) гомеостаз

4) адаптация

А4. Возникновение мутаций связано с таким свойством организма, как

1) наследственность  2) изменчивость   3) раздражимость

4) самовоспроизведение          

А5. Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?

1) клетка амебы 2) вирус оспы 3) стадо оленей 

4) природный заповедник

А6. Отдергивание руки от горячего предмета – это пример

1) раздражимости                                        2) способности к адаптациям3) наследования признаков от родителей  

4) саморегуляции

А7. Фотосинтез, биосинтез белков – это примеры

1) пластического обмена веществ   2) энергетического обмена веществ3) питания и дыхания                     

4) гомеостаза

А8. Какой из терминов является синонимом понятия «обмен веществ»?

1) анаболизм  2) катаболизм 3) ассимиляция 

4) метаболизм

Часть В

В1. Выберите процессы, изучаемые на молекулярно-генетическом уровне жизни:

1) репликация ДНК                            2) наследование болезни Дауна3) ферментативные реакции               4) строение митохондрий5) структура клеточной мембраны   

6) кровообращение

В2. Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались

Часть  С

С1. Какие приспособления растений обеспечивают им размножение и расселение?

С2. Что общего и в чем заключаются различия между разными уровнями организации жизни?

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/biologiya-nauka-o-zhizni/urovni-organizatsii-zhivoj-prirody

Уровни организации живой природы

Выделяют 8 уровней.

Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.

Каждый следующий уровень обязательно содержит в себе все предыдущие.

Давайте разберем каждый уровень подробно.

8 уровней организации живой природы

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.

Этот уровень сложно назвать «живым» .  Это скорее «биохимический» уровень — поэтому он является основой для всех остальных уровней организации живой природы.

Поэтому именно он лег в основу классификации Живой природы на царства  — какое питательное вещество является основным у организма:у животных — белок, у грибов — хитин, у растений это- углеводы.

Науки, которые изучают живые организмы именно на этом уровене:

Включает в себя предыдущий —  молекулярный уровень организации.

На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»

  • Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);
  • Органойды клетки;
  • Жизненные циклы — зарождение, рост и развитие и деление клеток

Науки, изучающие клеточный уровень организации:

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

Включает в себя 2 предыдущих уровня — молекулярный и клеточный.

Наука — Гистология

  • У одноклеточных органы —  это органеллы — есть общие органеллы — характерные для всех эукариотических или прокариотических  клеток, есть отличающиеся.
  • У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.

Тканевый и органный уровни организации — изучают науки:

Включает в себя все предыдущие уровни: молекулярныйклеточный, тканевый уровни и органный.

На этом уровне идет деление Живой природы на царства — животных, растений и грибов.

Характеристики  этого уровня:

  •  Обмен веществ (как на уровне организма, так и на клеточном уровне тоже )
  • Строение (морфология) организма
  • Питание (обмен веществ и энергии)
  • Гомеостаз
  • Размножение
  • Взаимодействие между организмами (конкуренция, симбиоз и т.д.)
  • Взаимодействие с окружающей средой

Науки:

&nbsp

Включает молекулярныйклеточный, тканевый уровни, органный и организменный.

Основные процессы на этом уровне:

  • Взаимодействие организмов между собой (конкуренция или размножение)
  • микроэволюция (изменение организма под действием внешних условий)

Науки, изучающие этот уровень:

На этом уровне уже учитывается почти все:

  • Пищевое взаимодействие организмов между собой — пищевые цепи и сети
  • Меж- и внутривидовое взаимодействие организмов — конкуренция и размножение
  • Влияние окружающей среды на организмы и, соответственно, влияние организмов на среду их обитания

Наука, изучающая этот уровень  — Экология

Ну и последний уровень — высший!

8. Биосферный уровень организации живой природы

Он включает в себя:

  • Взаимодействие как живых, так и неживых компонентов природы
  • Биогеоценозы
  • Влияние человека — «антропогенные факторы»
  • Круговорот веществ в природе
И все эти разделы изучает Экология!

Обсуждение: “Уровни организации живой природы”

(Правила комментирования)

Источник: https://distant-lessons.ru/urovni-organizacii-zhivoj-prirody.html

Уровни организации живого

В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни.

На всех этих уровнях проявляются все свойства, характерные для живого.

Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень. Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нуклеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами. Например, диаметр молекулы гемоглобина человека составляет 6,5 нм.

Читайте также:  Отдел голосеменные - биология

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой (рис. 42). На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Физикохимическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям.

Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, и соединения последних в определенном порядке.

Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима.

Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК.

В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмоле-кулярные структуры, примерами которых являются нуклеопроте-иды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков). В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи непрерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к.

они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках.

Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма.

Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, глико-лиз и другие реакции.

Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом.

Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул — в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу — механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекуляр-ные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень. Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого ^уровня заключается в том, что с него начинается жизнь.

Будучи способными к жизни, росту и размножению, клетки являются ос-иовной формой организации живой материи, элементарными еди-Вицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям.

Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клетками организмов-эукариотов, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки».

Надмолекулярные структуры на этом уровне формируют мембранные системы и органеллы клеток (ядра, митохондрии и др.).

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма.

На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам.

Например, у клеток эукариотов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены».

Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью.

Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин.

Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические).'Замечательной особенностью мембран является то, что на них происходит превращение энергии.

В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрии осуществляется окислительное фосфорилирование.

Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток — важнейшее свойство живого.

Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточ-ностью.

У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа).

У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень. Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных орга-нелл.

У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей.

Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень. Этот уровень представлен самими организмами — одноклеточными и многоклеточными организмами растительной и животной природы.

Специфическая особенность орга-низменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида.

Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

Популяционный уровень. Растения и животные не существуют изолированно; они объединены в популяции. Создавая надорганиз-менную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

Видовой уровень. Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен.

В составе одного вида может быть от одной до многих тысяч популяций, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью.

Ныне существующие виды не похожи на виды, существовавшие в прошлом. Вид является также единицей классификации живых существ.

Биоценотический уровень. Представлен биоценозами — сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого.

В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами.

На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Биосферный (глобальный) уровень. Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем.

Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. связан с появлением нового качества.

Вопросы для обсуждения

Читайте также:  Организм – единое целое, Биология

1. В чем заключается всеобщий методологический подход к пониманию сущности жизни? Когда он возник и в связи с чем?

2. Можно ли определить сущность жизни? Если да, то в чем заключается это определение и каковы его научные обоснования?

3. Возможна ли постановка вопроса о субстрате жизни?

4. Назовите свойства живого. Укажите, какие из этих свойств характерны для неживого и какие только для живого.

5. Какое значение для биологии имеет подразделение живого на уровни организации? Имеет ли такое подразделение практическое значение?

6. Какими общими чертами характеризуются разные уровни организации живого?

7. Почему нуклеопротеиды считают субстратом жизни и при каких условиях они выполняют эту роль?

8. Какое содержание вкладывают в понятия «мертвое» и «неживое»?

Литература

Верная Д. Возникновение жизни М.: Мир. 1969. 391 стр.

Опарин А. В. Материя, жизнь, интеллект. М.: Наука. 1977. 204 стр

Пехов А. П. Биология и научно-технический прогресс. М.: Знание. 1984. 64 стр.

Karcher S. J. Molecular Biology. Acad. Press. 1995. 273 pp.

Murphy M. P., O'Neill L. A. (Eds.) What is Life? The Next Fifty Years. Cambridge University Press. 1995. 203 pp.

Глава VI

Дата добавления: 2016-05-30; просмотров: 7866;

Источник: https://poznayka.org/s3954t1.html

Уровни организации жизни

ИЕРАРХИЧЕСКАЯ СИСТЕМА.

Живая природа является целостной, но неоднородной системой, которой свойственна иерархическая организация. Под системой, в науке понимают единство, или целостность, составленное из множества элементов, которые находятся в закономерных отношениях и связях друг с другом.

Главные биологические категории, такие, как геном (генотип), клетка, организм, популяция, биогеоценоз, биосфера, представляют из себясистемы. Иерархической принято называть система, в которой части, или элементы, расположены в порядке от низшего к высшему.

Так, в живой природе биосфера слагается из биогеоценозов, представленных популяциями организмов разных видов, а тела организмов имеют клеточное строение.

Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что удобно с точки зрения изучения жизни как сложного природного явления.

В медико-биологической науке широко используют классификацию уровней в соответствии с важнейшими частями, структурами и компонентами организма, являющимися для исследователœей разных специальностей непосредственными объектами изучения. Такими объектами бывают организм как таковой, органы, ткани, клетки, внутриклеточные структуры, молекулы.

Выделœение уровней рассматриваемой классификации хорошо согласуется с разрешающей способностью методов, которыми пользуются биологи и врачи: изучение объекта невооруженным глазом, с помощью лупы, светооптического микроскопа, электронного микроскопа, современных физико-химических методов.

Очевидна связь этих уровней и с типичными размерами изучаемых биологических объектов (табл. 1.1).

Таблица 1.1. Уровня организации (изучения), выделяемые в многоклеточном организме (по Э. Дс. Робертсу и др., 1967, с изменениями)

Размеры объекта Объект изучения Уровень организации (по объекту изучения) Уровень организации (по методу изучения)
0,1 мм (100мкм) и более Организм, органы Организменный, органный Анатомический
100—10 мкм Ткани Тканевый Гистологический (светооптический)
20—0,2 мкм (200 нм) Клетки (эукариотические и прокариотические) Клеточный Цитологический
200—1 нм Клеточные компоненты Субклеточный Ультраструктурный (электронно-микроскопический)
Менее 1 нм Молекулы Макромолеку-лярный Физико-химический

Взаимопроникновение идей и методов различных областей естествознания (физики, химии, биологии), возникновение наук на стыке этих областей (биофизика, биохимия, молекулярная биология) повлекли за собой расширение классификации, вплоть до выделœения молекулярного и электронно-атомного уровней. Медико-биологические исследования, проводимые на этих уровнях, уже сейчас дают практический выход в здравоохранение. Так, приборы, основанные на явлениях электронного парамагнитного и ядерного магнитного резонанса, с успехом применяют для диагностики заболеваний и состояний организма.

Возможность исследовать фундаментальные биологические процессы, происходящие в организме, на клеточном, субклеточном и даже молекулярном уровнях является выдающейся, но не единственной отличительной чертой современной биологии. Стоит сказать, что для нее типичен углубленный интерес к процессам в сообществах организмов, которые определяют планетарную роль жизни.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, классификация пополнилась нужнорганизменными уровнями, такими, как видовой, биогеоценотический, биосферный.

Разобранной выше классификации придерживается большинство конкретных медико-биологических и антропобиологических наук. Это неудивительно, так как она отражает уровни организации живой природы через исторически сложившиеся уровни ее изучения.

В задачу курса биологии медицинского вуза входит преподать наиболее полную характеристику биологического ʼʼнаследстваʼʼ людей.

Для решения этой задачи целœесообразно воспользоваться классификацией, наиболее близко отражающей именно уровни организации жизни.

В названной классификации выделяются молекулярно-генетический, клеточный, Организменный, или онтогенетический, популяционно-видовой, биогеоценотический уровни.

Особенность данной классификации состоит по сути в том, что отдельные уровни иерархической системы жизни определяются в ней на общей базе выделœения для каждого уровня элементарной единицы и элементарного явления.

Элементарная единица — это структура или объект, закономерные изменения которых, обозначаемые как элементарное явление, составляют специфический для соответствующего уровня вклад в процесс сохранения и развития жизни.

Соответствие выделяемых уровней узловым моментам эволюционного процесса, вне которого не стоит ни одно живое существо, делает их всœеобщими, распространяющимися на всю область жизни, включая человека.

Элементарной единицей на молекулярно-генетическом уровне служит ген — фрагмент молекулы нуклеиновой кислоты, в котором записан определœенный в качественном и количественном отношении объём биологической (генетической) информации.

Элементарное явление заключается прежде всœего в процессе конвариантной редупликации, или самовоспроизведении, с возможностью некоторых изменений в содержании закодированной в гене информации.

Путем редупликации ДНК происходит копирование заключенной в генах биологической информации, что обеспечивает преемственность и сохранность (консерватизм) свойств организмов в ряду поколений. Редупликация, таким образом, является основой наследственности.

В силу ограниченной стабильности молекул или ошибок синтеза в ДНК (время от времени, но неизбежно) случаются нарушения, которые изменяют информацию генов. В последующей редупликации ДНК эти изменения воспроизводятся в молекулах-копиях и наследуются организмами дочернего поколения.

Указанные изменения возникают и тиражируются закономерно, что и делает редупликацию ДНК конвариантной, ᴛ.ᴇ. происходящей иногда с некоторыми изменениями. Такие изменения в генетике получили название генных (или истинных) мутаций.

Конвариантность редупликации, таким образом, служит основой мутационной изменчивости.

Биологическая информация, заключающаяся в молекулах ДНК, не участвует непосредственно в процессах жизнедеятельности. Она переходит в действующую форму, будучи перенесена в молекулы белков.

Отмеченный перенос осуществляется благодаря механизму матричного синтеза, в котором исходная ДНК служит, как и в случае с редупликацией, матрицей (формой), но для образования не дочерней молекулы ДНК, а матричной РНК, контролирующей биосинтез белков.

Отмеченное дает основание причислить матричный синтез информационных макромолекул также к элементарному явлению на молекулярно-генетическом уровне организации жизни.

Воплощение биологической информации в конкретные процессы жизнедеятельности требует специальных структур, энергии и разнообразных химических веществ (субстратов). Описанные выше условия в живой природе обеспечивает клетка, служащая элементарной структурой клеточного уровня.

Элементарное явление представлено реакциями клеточного метаболизма, составляющими основу потоков энергии, веществ и информации.

Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию, которые используются (в соответствии с имеющейся генетической информацией) в процессе биосинтеза белков и других соединœений, необходимых организму.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, на клеточном уровне сопрягаются механизмы передачи биологической информации и превращения веществ и энергии. Элементарное явление на этом уровне служит энергетической и вещественной основой жизни на всœех других уровнях ее организации.

Элементарной единицей организме/того уровня является особь в ее развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет также назвать данный уровень онтогенетическим. Закономерные изменения организма в индивидуальном развитии составляют элементарное явление данного уровня.

Эти изменения обеспечивают рост организма, дифференциацию его частей и одновременно интеграцию развития в единое целое, специализацию клеток, органов и тканей.

В ходе онтогенеза в определœенных условиях внешней среды происходит воплощение наследственной информации в биологические структуры и процессы, на базе генотипа формируется фенотип организмов данного вида.

Элементарной единицей популяционно-видового уровня служит популяция — совокупность особей одного вида. Объединœение особей в популяцию происходит благодаря общности генофонда, используемого в процессе полового размножения для создания генотипов особей следующего поколения.

Популяция в силу возможности межпопуляционных скрещиваний представляет собой открытую генетическую систему.

Действие на генофонд популяции элементарных эволюционных факторов, таких, как мутационный процесс, колебания численности особей, естественный отбор, приводит к эволюционно значимым изменениям генофонда, которые представляют элементарные явления на данном уровне.

Организмы одного вида населяют территорию с известными абиотическими показателями (климат, химизм почв, гидрологические условия) и взаимодействуют с организмами других видов.

В процессе совместного исторического развития на определœенной территории организмов разных систематических групп образуются динамичные, устойчивые во времени сообщества — биогеоценозы, которые служат элементарной единицей биогеоценотического (экосистемного) уровня.

Элементарное явление на рассматриваемом уровне представлено потоками энергии и круговоротами веществ. Ведущая роль в этих круговоротах и потоках принадлежит живым организмам. Биогеоценоз — это открытая в вещественном и энергетическом плане система.

Биогеоценозы, различаясь по видовому составу и характеристикам абиотической своей части, объединœены на планете в единый комплекс — область распространения жизни, или биосферу.

Приведенные выше уровни отражают важнейшие биологические явления, без которых невозможны эволюция и, следовательно, само существование жизни. Хотя элементарные единицы и явления на выделяемых уровнях различны, всœе они тесно взаимосвязаны, решая свою специфическую задачу в рамках единого эволюционного процесса.

С конвариантной редупликацией на молекулярно-генетическом уровне связаны элементарные основы этого процесса в виде явлений наследственности и истинной мутационной изменчивости. Особая роль клеточного уровня состоит в энергетическом, вещественном и информационном обеспечении происходящего на всœех других уровнях.

На онтогенетическом уровне биологическая информация, находящаяся в генах, преобразуется в комплекс признаков и свойств организма. Возникающий таким образом фенотип становится доступным действию естественного отбора.

На популяционно-видовом уровне определяется эволюционная ценность изменений, относящихся к молекулярно-генетическому, клеточному и онтогенетическому уровням.

Специфическая роль биогеоценотического уровня состоит в образовании сообществ организмов разных видов, приспособленных к совместному проживанию в определœенной среде обитания. Важной отличительной чертой таких сообществ является их устойчивость во времени.

Рассмотренные уровни отражают общую структуру эволюционного процесса, закономерным результатом которого является человек. По этой причине типичные для этих уровней элементарные структуры и явления распространяются и на людей, правда, с некоторыми особенностями в силу их социальной сущности.

  • – Уровни организации жизни

      Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации… [читать подробнее].

  • – Уровни организации жизни

    ИЕРАРХИЧЕСКАЯ СИСТЕМА. Живая природа является целостной, но неоднородной системой, которой свойственна иерархическая организация. Под системой, в науке понимают единство, или целостность, составленное из множества элементов, которые находятся в… [читать подробнее].

  • – Уровни организации жизни

      Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации… [читать подробнее].

  • – Структурные уровни организации жизни

    Жизнь характеризуется диалектическим единством противоположностей: она одновременно целостна и дискретна. Органический мир представляет собой единое целое, так как составляет систему взаимосвязанных частей (существование одних организмов зависит от других), и в то же… [читать подробнее].

  • Источник: http://referatwork.ru/category/obrazovanie/view/219423_urovni_organizacii_zhizni

    Вопрос о сущности жизни является одним из давних вопросов в биологии, поскольку интерес к нему восходит еще к античным векам. Дававшиеся в разные времена определения жизни не могли быть исчерпывающими из-за отсутствия достаточных данных. Лишь развитие молекулярной биологии привело к новому пониманию сущности жизни, определению свойств живого и вычленению уровней организации, живого.

    Сущность и субстрат жизни

    Всеобщим методологическим подходом к пониманию сущности жизни в настоящее время является понимание жизни в качестве процесса, конечным результатом которого является самообновление, проявляющееся в самовоспроизведении.

    Все живое происходит только из живого, а всякая организация, присущая живому, возникает только из другой подобной организации.

    Следовательно, сущность жизни заключается в ее самовоспроизведении, в основе которого лежит координация физических и химических явлений и которое обеспечивается передачей генетической информации от поколений к поколениям.

    Именно эта информация обеспечивает самовоспроизведение и саморегуляцию живых существ. Поэтому жизнь — это качественно особая форма существования материи, связанная с воспроизведением. Явления жизни представляют собой форму движения материи, высшей по сравнению с физической и химической формами его существования.

    Живое построено из тех же химических элементов, что и неживое (кислород, водород, углерод, азот, сера, фосфор, натрий, калий, кальций и другие элементы). В клетках они находятся в виде органических соединений. Однако организация и форма существования живого имеет специфические особенности, отличающие живое от предметов неживой природы.

    В качестве субстрата жизни внимание привлекают нуклеиновые кислоты (ДНК и РНК) и белки. Нуклеиновые кислоты — это сложные химические соединения, содержащие углерод, кислород, водород, азот и фосфор. ДНК является генетическим материалом клеток, определяет химическую специфичность генов. Под контролем ДНК идет синтез белков, в котором участвуют РНК.

    Белки — это также сложные химические соединения, содержащие углерод, кислород, водород, азот, серу, фосфор. Молекулы белков характеризуются большими размерами, чрезвычайным разнообразием, которое создается аминокислотами, соединенными в полипептидных цепях в разном порядке.

    Большинство клеточных белков представлено ферментами. Они выступают также в роли структурных компонентов клетки. Каждая клетка содержит сотни разных белков, причем клетки того или иного типа обладают белками, свойственными только им.

    Поэтому содержимое клеток каждого типа характеризуется определенным белковым составом.

    Ни нуклеиновые кислоты, ни белки в отдельности не являются субстратами жизни. В настоящее время считают, что субстратом жизни являются нуклеопротеиды. Они входят в состав ядра и цитоплазмы клеток животных и растений. Из них построены хроматин (хромосомы) и рибосомы.

    Они обнаружены на протяжении всего органического мира — от вирусов до человека. Можно сказать, что нет живых систем, не содержащих нуклеопротеидов.

    Однако важно подчеркнуть, что нуклеопротеиды являются субстратом жизни лишь тогда, когда они находятся в клетке, функционируют и взаимодействуют там. Вне клеток (после выделения из клеток) они являются обычными химическими соединениями.

    Следовательно, жизнь есть, главным образом, функция взаимодействия нуклеиновых кислот и белков, а живым является то, что содержит самовоспроизводящую молекулярную систему в виде механизма воспроизводства нуклеиновых кислот и белков.

    В отличие от живого различают понятие «мертвое», под которым понимают совокупность некогда существовавших организмов, утративших механизм синтеза нуклеиновых кислот и белков, т. е. способность к молекулярному воспроизведению. Например, «мертвым» является известняк, образованный из остатков живших когда-то организмов.

    Наконец, следует различать «неживое», т. е. ту часть материи, которая имеет неорганическое (абиотическое) происхождение и ничем не связана в своем образовании и строении с живыми организмами.

    Например, «неживым» является известняк, образованный из неорганических вулканических известняковых отложений.

    Неживая материя в отличие от живого не способна поддерживать свою структурную организацию и использовать для этих целей внешнюю энергию.

    Обсуждая молекулы, рассматриваемые в качестве субстрата жизни, нельзя не отметить, что они подвергаются непрерывным превращениям во времени и пространстве.

    Достаточно сказать, что ферменты могут превратить любой субстрат в продукт реакции в исключительно короткое время.

    Поэтому определение нуклеопротеидов в качестве субстрата жизни означает признание последнего в качестве очень подвижной системы.

    Как живое, так и неживое построены из молекул, которые изначально являются неживыми. Тем не менее, живое резко отличается от неживого. Причины этого глубокого различия определяются свойствами живого, а молекулы, содержащиеся в живых системах, называют биомолекулами.

    Свойства живого

    Для живого характерен ряд свойств, которые в совокупности «делают» живое живым. Такими свойствами являются самовоспроизведение, специфичность организации, упорядоченность структуры, целостность и дискретность, рост и развитие, обмен веществ и энергии, наследственность и изменчивость, раздражимость, движение, внутренняя регуляция, специфичность взаимоотношений со средой.

    Самовоспроизведение (репродукция ). Это свойство является важнейшим среди всех остальных.

    Замечательной особенностью является то, что самовоспроизведение тех или иных организмов повторяется в неисчислимых количествах генераций, причем генетическая информация о самовоспроизведении закодирована в молекулах ДНК.

    Положение «все живое происходит только от живого» означает, что жизнь возникла лишь однажды и что с тех пор начало живому дает только живое. На молекулярном уровне самовоспроизведение происходит на основе матричного синтеза ДНК, которая программирует синтез белков, определяющих специфику организмов.

    На других уровнях оно характеризуется чрезвычайным разнообразием форм и механизмов, вплоть до образования специализированных половых клеток (мужских и женских). Важнейшее значение самовоспроизведения заключается в том, что оно поддерживает существование видов, определяет специфику биологической формы движения материи.

    Специфичность организации . Она характерна для любых организмов, в результате чего они имеют определенную форму и размеры. Единицей организации (структуры и функции) является клетка.

    В свою очередь клетки специфически организованы в ткани, последние — в органы, а органы — в системы органов. Организмы не «разбросаны» случайно в пространстве. Они специфически организованы в популяции, а популяции специфически организованы в биоценозы.

    Последние вместе с абиотическими факторами формируют биогеоценозы (экологические системы), являющиеся элементарными единицами биосферы.

    Упорядоченность структуры . Для живого характерна не только сложность химических соединений, из которого оно построено, но и упорядоченность их на молекулярном уровне, приводящая к образованию молекулярных и надмолекулярных структур.

    Создание порядка из беспорядочного движения молекул — это важнейшее свойство живого, проявляющееся на молекулярном уровне. Упорядоченность в пространстве сопровождается упорядоченностью во времени. В отличие от неживых объектов упорядоченность структуры живого происходит за счет внешней среды.

    При этом в среде уровень упорядоченности снижается.

    Целостность (непрерывность) и дискретность (прерывность). Жизнь целостна и в то же время дискретна как в плане структуры, так и функции. Например, субстрат жизни целостен, т. к. представлен нуклеопротеидами, но в то же время дискретен, т. к. состоит из нуклеиновой кислоты и белка.

    Нуклеиновые кислоты и белки являются целостными соединениями, однако тоже дискретны, состоя из нуклеотидов и аминокислот (соответственно). Репликация молекул ДНК является непрерывным процессом, однако она дискретна в пространстве и во времени, т. к.

    в ней принимают участие различные генетические структуры и ферменты. Процесс передачи наследственной информации тоже является непрерывным, но он дискретен, т. к.

    состоит из транскрипции и трансляции, которые из-за ряда различий между собой определяют прерывность реализации наследственной информации в пространстве и во времени. Митоз клеток также непрерывен и одновременно прерывен.

    Любой организм представляет собой целостную систему, но состоит из дискретных единиц — клеток, тканей, органов, систем органов. Органический мир также целостен, поскольку существование одних организмов зависит от других, но в то же время он дискретен, состоя из отдельных организмов.

    Рост и развитие. Рост организмов происходит путем прироста массы организма за счет увеличения размеров и числа клеток. Он сопровождается развитием, проявляющимся в дифференцировке клеток, усложнении структуры и функций.

    В процессе онтогенеза формируются признаки в результате взаимодействия генотипа и среды. Филогенез сопровождается появлением гигантского разнообразия организмов, органической целесообразностью.

    Процессы роста и развития подвержены генетическому контролю и нейрогуморальной регуляции.

    Обмен веществ и энергии . Благодаря этому свойству обеспечивается постоянство внутренней среды организмов и связь организмов с окружающей средой, что является условием для поддержания жизни организмов.

    Живые клетки получают (поглощают) энергию из внешней среды в форме энергии света. В дальнейшем химическая энергия преобразуется в клетках для выполнения многих работ.

    В частности, для осуществления химической работы в процессе синтеза структурных компонентов клетки, осмотической работы, обеспечивающей транспорт разных веществ в клетки и вывод из них ненужных веществ, и механической работы, обеспечивающей сокращение мышц и передвижение организмов. У неживых объектов, например, в машинах химическая энергия превращается в механическую только в случае двигателей внутреннего сгорания.

    Источник: http://MirZnanii.com/a/7550/sushchnost-zhizni-svoystva-i-urovni-organizatsii-zhivogo

    Ссылка на основную публикацию
    Для любых предложений по сайту: [email protected]