Немембранные органоиды клетки – биология

Немембранные органоиды клетки: почему так называются, что к ним относится, строение и функции

Любая живая клетка состоит из трех основных компонентов: ядра, цитоплазматической мембраны и цитоплазмы. Цитоплазма — внутренняя часть клетки — занимает наибольший объем и включает в себя гиалоплазму и непосредственно органоиды.

Сами органоиды тоже можно разделить на несколько типов:

  • двухмембранные (имеющие две мембраны);
  • одномембранные (имеющие одну мембрану);
  • немембранные (не имеющие мембран).

Немембранные органоиды

Органоиды — это постоянные функциональные структуры клетки. Каждый из них выполняет свою, строго определенную функцию. Почему они получили такое название? Дело в том, что немембранные органоиды, в отличие от остальных, лишены собственной замкнутой мембраны и, соответственно, не имеют четкой границы с жидкой средой.

К немембранным органоидам клетки принято относить:

  • рибосомы;
  • реснички и жгутики;
  • микротрубочки
  • микрофиламенты;
  • микрофибриллы;
  • пероксисомы;
  • клеточный центр.

Рибосомы

По своей форме рибосомы напоминают сферу. Массовая их доля от массы всей клетки достаточно велика и порой может насчитывать четверть. Основная функция рибосом — биосинтез белка. Рибосомы представляют собой сложные рибонуклепротеиды, в их состав входят белки и рибосомальные РНК.

Молекулы РНК составляют большую часть и образуют каркас органоида. Условно рибосомы можно разделить на большую и малую субъединицы, которые способны к диссоциации. В нерабочем состоянии эти субъединицы находятся раздельно и соединяются, когда рибосома активна.

В процессе соединения в цитоплазме обязательно должны присутствовать ионы кальция или магния.

В клетке рибосомы располагаются как свободно, так и в связи с эндоплазматической сетью. Чаще всего рибосомы бывают единичными, но возможны случаи, когда с молекулой информационной РНК ассоциируются две или более рибосом.

Такую структуру называют полисомой. Полисомы состоят из одной молекулы иРНК и группы рибосом. Они выполняют функцию «считывания» информаци иРНК и создания полипептидных цепей в соответствии с нуклеотидной последовательностью.

Существуют два типа рибосом: прокариотические и эукариотические. Прокариотические характерны в основном для организмов-прокариотов, эукариотическое — для эукариотов. И те и другие имеют в своем составе все те же субъединицы и выполняют одни и те же функции. Примечательно, что рибосомы эукариот имеют больший размер, чем рибосомы прокариот.

Реснички и жгутики

И реснички, и жгутики служат для передвижения и состоят в основном из сократительных белков. Ресничками обладают простейшие одноклеточные, такие как инфузории-туфельки; жгутики характерны для сперматозоидов и хламидомонад. Располагаются они с внешней стороны цитоплазматической мембраны.

Микротрубочки

Микротрубочки находятся непосредственно в цитоплазме любой эукариотической клетки и представляют собой полые трубки из белка тубулина.

Способны легко распадаться и собираться заново; такая нестабильность в динамике исключительно важна.

Например, в процессе клеточного деления микротрубочки растут в разы быстрее, способствуют образованию веретена деления и правильной ориентации хромосом. В длину эти органоиды не превышают нескольких микрометров.

Микротрубочки выполняют строительную функцию, помогая создавать каркас клетки, поддерживают ее форму, а также участвуют в транспорте различных частиц, играя роль своеобразных рельсов: способствуют легкому перемещению митохондрий внутри клетки.

Аксонема — центральная структура ресничек и жгутиков — также образована микротрубочками.

Помимо перечисленного, они участвуют и в информационных процессах: входят в состав центриолей и веретена деления, играют роль в расхождении хромосом при митотическом и мейотическом делениях.

Микрофиламенты

Микрофиламенты — сократимые элементы цитоскелета, состоящие из актиновых нитей и прочих сократительных белков. Обнаружены во всех клетках эукариот, но особенно высокое их содержание приходится на мышечные волокна.

Встречаются во всей цитоплазме и находятся в ней в виде пучков из параллельно расположенных нитей или трехмерной сети.

Принимают участие в построении цитоскелета, изменении формы и передвижении, эндомитозе, участвуют в процессах фагоцитоза, образования перетяжки во время деления хромосом и расхождения их к полюсам.

Микрофибриллы

Микрофибриллы в большинстве своем сосредоточены в подмембранном слое цитоплазмы. Они представляют из себя тонкие, неветвящиеся и напоминающие нити элементы, состоящие из белка.

В зависимости от класса клеток белок имеет свою, отличную от других структуру. Микрофибриллы так же, как и микротрубочки, принимают участие в формировании каркаса и выполняют опорную функцию.

В совокупности с микротрубочками и микрофиламентами отбразуют цитоскелет.

Клеточный центр

Клеточный центр обязательно присутствует в любой животной клетке, но, согласно наблюдениям, отсутствует у высших растений, водорослей и некоторых видов простейших. Он включает в себя две центриоли — структуры, напоминающие полые цилиндры, стенки которых образованы микротрубочками.

Центриоли располагаются перпендикулярно друг другу и образуют диплосому. Одна из них, материнская, в отличие от дочерней, имеет дополнительные образования, например, сатиллиты, а также является источником образования микротрубочек. Снаружи центриоли окружены матриксом, который имеет собственную ДНК и РНК.

При митотическом делении центриоли отвечают за правильное распределение хромосом между двумя новыми клетками. В процессе деления ядра в клетках эукариот образуется веретено деления, построенное из микротрубочек.

Эта структура обеспечивает расхождение хромосом к полюсам. По завершении процесса деления каждая новая клетка имеет по две центриоли, в результате чего образуется два новых клеточных центра.

Каждый клеточный центр содержит в себе две центриоли.

Клеточный центр участвует во множестве процессов. Так, именно он отвечает за управление абсолютно всеми микротрубочками, имеющимися в клетке, образование ресничек, жгутиков и нитей веретена деления.

При делении клеточный центр располагается рядом с полюсами, так как участвует в образовании веретена деления.

В клетках, которые в данный момент не делятся, его расположение приходится на центр клетки, рядом с ядром или комплексом Гольджи.

Источник: https://obrazovanie.guru/nauka/biologiya/osobennosti-nemembrannyh-organoidov-kletki.html

Фламинго-НН

Органоиды (греч. órganon — орган и éidos — вид), или органеллы (лат. organella — уменьшительное от греч. órganon) — постоянные структуры эукариотических клеток.

К органоидам относят клеточный центр, рибосомымитохондриипластиды, комплекс Гольджиэндоплазматическую сетьлизосомывакуоли  и цитоплазматические микротрубочки. Каждый органоид осуществляет определенные функции, жизненно необходимые для клетки.

Органоиды разделяют на немембранные (не имеющие мембран), одномембранные(окруженные одной мембраной) и двухмембранные (окруженные двумя мембранами).

Немембранные органоиды

Немембранные органоиды — это органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе микротрубочек —клеточный центр и органоиды движения (жгутики и реснички).

Рибосома — мельчайший органоид сферической или слегка овальной формы, диаметром 8 — 23 нм. Можно сказать, что рибосомы представляют собой гигантские объединения молекул —нуклеопротеиды, состоящие из молекул рРНК, связанных с белками. 

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, американским цитологом румынского происхождения Джорджем Паладе в середине 1950-х годов.

Термин «рибосома» был предложен Ричардом Робертсом в 1958 году взамен множества различных названий, которые существовали для обозначения этих частиц (микросомы, микросомные частицы, микросомные рибонуклеопротеидные частицы, гранулы Паладе).

 В составе рибосомы различают большую и малую субъединицы, которые синтезируются в ядрышке из рибосомальных белков и рРНК и поступают в цитоплазму, где и формируют рибосому.

Рибосомы могут располагаться в цитоплазме свободно или быть связанными с мембранами эндоплазматической сети. Свободные рибосомы могут быть единичными, но нередко с одной молекулой иРНК может быть ассоциировано несколько рибосом, такая структура называетсяполирибосомой, или полисомой.

Полирибосомы, или полисомы, — находящиеся в живых клетках и синтезирующие белок комплексы, каждый из которых состоит из молекулы иРНК и нескольких связанных с ней рибосом.

Полисомы образуются при последовательном присоединении рибосом к иРНК. Двигаясь по иРНК, рибосомы «считывают» информацию, заложенную в одной и той же молекуле иРНК. При этом каждая рибосома синтезирует одну полипептидную цепь согласно нуклеотидной последовательности иРНК.

Синтез белка в клетке осуществляется преимущественно полисомами, а не одиночными рибосомами.

Основная функция рибосом — синтез белка.

Рибосомы эукариотических клеток крупнее, чем рибосомы прокариот. Синтез рРНК и рибосомных белков у эукариот происходит в специальной внутриядерной структуре — ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме.

Рибосомы эукариот и прокариот

Характерные особенностиРибосомы прокариотического типаРибосомы эукариотического типа
Диаметр 8 нм 23 нм
Молекулярная масса 2,5 х 106 4,2 х 106
Соотношение РНК и белка 3: 2 1:1
Состав большой субъединицы 2 молекулы рРНК и 34 молекулы белка 3 молекулы рРНК и 49 молекул белка
Состав малой субъединицы 1 молекула рРНК и 21 молекула белка 1 молекула рРНК и 33 молекулы белка
Скорость осаждения в ультрацентрифуге 70 S 80 S
Примерное количество в клетке 104 105

Микротрубочки — полые цилиндрические структуры клеток эукариотических организмов, основной компонент которых — белок тубулин. Длина микротрубочек варьирует, диаметр сечения около 25 нм.

Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится, например, веретено деления, а к постоянным — реснички, жгутики и центриоли клеточного центра.

Микротрубочки образуют внутренний каркас клетки (цитоскелет), участвуют в поддержании формы клетки и расположения органоидов в цитоплазме, входят в состав ресничек и жгутиков, используются в качестве «рельсов» для транспортировки частиц и т. д. Из микротрубочек состоят также центриоли и веретено деления, микротрубочки участвуют в митотическом и мейотическом расхождении хромосом.

Микротрубочки в клетках человеческого организма: А — микротрубочки в интерфазе; В — ранняя анафаза митоза, микротрубочки зеленые, центриоли красные, хромосомы голубые (световая микроскопия в ультрафиолетовом свете, флюоресцентные красители)

Микротрубочки полярны: на одном конце может происходить самосборка микротрубочки, на другом — разборка. Сборка и разборка микротрубочек связана с затратами энергии.

Микротрубочки являются динамическими структурами, в клетке они постоянно строятся и разбираются. Такая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Клеточный центр — немембранный органоид, постоянная структура животных клеток. Отсутствует в клетках растений.

Клеточный центр состоит из двух центриолей. При образовании митотического веретена деления центриоли расходятся к полюсам клетки, обеспечивая равномерное распределение хромосом между дочерними клетками.

Веретено деления — структура, возникающая в клетках эукариотических организмов в процессе деления ядра.

Веретено деления: микротрубочки прикрепляются к центромерам хромосом

Веретено деления состоит из микротрубочек. Часть микротрубочек идет от центриолей к хромосомам, другие микротрубочки заканчиваются свободно в цитоплазме. Веретено деления обеспечивает согласованное расхождение хромосом к полюсам клетки.

После деления клетки каждая из вновь образовавшихся клеток получает пару центриолей: перед началом деления клетки происходит удвоение центриолей (от каждой центриоли отпочковывается новая центриоль) и центриоли расходятся к полюсам.

Электронная микрофотография клеточного центра: видны две центриоли, перпендикулярно ориентированные друг к другу

В результате образуются два клеточных центра — по одному на каждую вновь образовавшуюся клетку, при этом каждый клеточный центр состоит из двух центриолей.

Центриоль — небольшой немембранный органоид (диаметр 0,2 мкм, длина 0,3 — 0,5 мкм), представляет собой цилиндр, стенка которого образована девятью триплетами микротрубочек, состоящих из молекул белка тубулина.

Читайте также:  Жизненные формы цветковых растений, Биология

В животных клетках две центриоли образуют клеточный центр. Эти структуры, расположенные под прямым углом друг к другу, обычно находятся вблизи ядра.

В ходе митоза они расходятся к разным концам клетки, формируя веретено деления. После деления каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению.

Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

В клетках растений центриолей нет, и митотическое веретено образуется там при их отсутствии.

Электронные микрофотографии центриолей: А — видны девять триплетов микротрубочек; В — вид сбоку

Органоиды движения — реснички и жгутики. Это выросты мембраны диаметром около 0,25 мкм, содержащие внутри микротрубочки. Такие органоиды имеются у многих клеток: у простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например в дыхательном эпителии.

Реснички — многочисленные цитоплазмические выросты на поверхности мембраны. Жгутики — единичные цитоплазматические выросты на поверхности клетки.

Источник: http://flamingo-nn.ucoz.com/load/obshhaja_biologija/uchenie_o_kletke/nemembrannye_organoidy/26-1-0-230

Немембранные органоиды: строение и функции

Образование 28 ноября 2015

Все клетки живых организмов состоят из плазматической мембраны, ядра и цитоплазмы. В последней находятся органоиды и включения.

Органоиды – это постоянные образования в клетке, каждое из которых исполняет определенные функции. Включения – это временные структуры, которые в основном состоят из гликогена у животных и крахмала у растений. Они выполняют запасную функцию.

Включения могут находиться как в цитоплазме, так и в матриксе отдельных органоидов, таких как хлоропласты.

Классификация органоидов

В зависимости от строения, они делятся на две большие группы. В цитологии выделяют мембранные и немембранные органоиды. Первые можно разделить на две подгруппы: одномембранные и двумембранные.

К одномембранным органоидам относятся эндоплазматическая сеть (ретикулум), аппарат Гольджи, лизосомы, вакуоли, везикулы, меланосомы.

К двумембранным органоидам причисляются митохондрии и пластиды (хлоропласты, хромопласты, лейкопласты). Они имеют самое сложное строение, и не только за счет наличия двух мембран. В их составе также могут присутствовать включения и даже целые органоиды и ДНК. Например, в матриксе митохондрий можно наблюдать рибосомы и митохондриальную ДНК (мтДНК).

К немембранным органоидам относятся рибосомы, клеточный центр (центриоль), микротрубочки и микрофиламенты.

Немембранные органоиды: функции

Рибосомы нужны для того, чтобы синтезировать белок. Они отвечают за процесс трансляции, то есть расшифровке информации, которая находится на иРНК, и формировании полипептидной цепочки из отдельных аминокислот.

Клеточный центр участвует в образовании веретена деления. Оно образуется как в процессе мейоза, так и митоза.

Такие немембранные органоиды, как микротрубочки, формируют цитоскелет. Он выполняет структурную и транспортную функции. По поверхности микротрубочек могут перемещаться как отдельные вещества, так и целые органоиды, например, митохондрии. Процесс транспортировки происходит с помощью специальных белков, которые называются моторными. Центром организации микротрубочек является центриоль.

Микрофиламенты могут участвовать в процессе изменения формы клетки, а также нужны для передвижения некоторых одноклеточных организмов, таких как амебы. Кроме того, из них могут образовываться разнообразные структуры, функции которых до конца не изучены.

Видео по теме

Структура

Как понятно из названия, органоиды немембранного строения не имеют мембран. Они состоят из белков. Некоторые из них содержат также нуклеиновые кислоты.

Структура рибосом

Эти немембранные органоиды находятся на стенках эндоплазматического ретикулума. Рибосома обладает шаровидной формой, ее диаметр составляет 100-200 ангстрем.

Эти немембранные органоиды состоят из двух частей (субъединиц) – малой и большой. Когда рибосома не функционирует, они находятся раздельно.

Для того, чтобы они объединились, обязательно присутствие ионов магния или кальция в цитоплазме.

Иногда при синтезе больших молекул белка рибосомы могут объединяться в группы, которые называются полирибосомами или полисомами. Количество рибосом в них может колебаться от 4-5 до 70-80 в зависимости от размера молекулы белка, которая синтезируется ими.

Рибосомы состоят из белков и рРНК (рибосомной рибонуклеиновой кислоты), а также молекул воды и ионов металлов (магния или кальция).

Строение клеточного центра

У эукариот эти немембранные органоиды состоят из двух частей, называемых центросомами, и центросферы – более светлой области цитоплазмы, которая окружает центриоли. В отличии от случая с рибосомами, части этого органоида обычно объединены. Совокупность двух центросом называется диплосомой.

Каждая центросома состоит из микротрубочек, которые закручены в форме цилиндра.

Структура микрофиламентов и микротрубочек

Первые состоят из актина и других сократительных белков, таких как миозин, тропомиозин и др.

Микротрубочки представляют длинные цилиндры, пустые внутри, которые растут от центриоли к краям клетки. Их диаметр – 25 нм, а длина может быть от нескольких нанометров до нескольких миллиметров в зависимости от размеров и функций клетки. Эти немембранные органоиды состоят в первую очередь из белка тубулина.

Микротрубочки являются нестабильными органоидами, которые постоянно изменяются. У них наблюдается плюс-конец и минус-конец. Первый постоянно присоединяет к себе молекулы тубулина, а от второго они постоянно отщепляются.

Формирование немембранных органоидов

За образование рибосом отвечает ядрышко. В нем происходит формирование рибосомной РНК, структура которой кодируется рибосомной ДНК, находящейся на специальных участках хромосом.

Белки, из которых состоят эти органоиды, синтезируются в цитоплазме. После этого они транспортируются в ядрышко, где и объединяются с рибосомной РНК, образуя малую и большую субъединицы.

Затем уже готовые органоиды перемещаются в цитоплазму, а затем на стенки гранулярного эндоплазматического ретикулума.

Клеточный центр присутствует в клетке уже с момента ее образования. Он формируется при делении материнской клетки.

Заключение

В качестве вывода приведем краткую таблицу.

Общие сведения о немембранных органоидах

Органоид Локализация Функции Строение
Рибосома внешняя сторона мембран гранулярного эндоплазматического ретикулума; цитоплазма синтез белков (трансляция) две субъединицы, состоящие из рРНК и белков
Клеточный центр центральная область цитоплазмы клетки участие в процессе образования веретена деления, организация микротрубочек две центриоли, состоящие из микротрубочек, и центросфера
Микротрубочки цитоплазма поддержание формы клетки, транспорт веществ и некоторых органоидов длинные цилиндры из белков (прежде всего тубулина)
Микрофиламенты цитоплазма изменение формы клетки и др. белки (чаще всего актин, миозин)

Итак, теперь вы знаете все о немембранных органоидах, которые имеются как в растительных, так и в животных и грибных клетках.

Источник: fb.ruОбразование
Что такое органоид? Строение и функции органоидов. Органоиды растительной клетки. Органоиды животной клетки

Клетка – это уровень организации живой материи, самостоятельная биосистема, которая обладает основными свойствами всего живого. Так, она может развиваться, размножаться, двигаться, адаптироваться и изменяться. Кроме э…

Здоровье
Анатомия: строение и функции слухового анализатора

Звуковые волны представляют собой вибрации, с определенной частотой передающиеся во всех трех средах: жидкой, твердой и газообразной. Для восприятия и анализа их человеком существует орган слуха – ухо, которое с…

Здоровье
Таламус – это… Таламус: определение, строение и функции

Развитие психиатрии и неврологии в современных условиях невозможно без глубоких знаний строения и функций мозга. Без понимания процессов, происходящих в этом органе, нельзя эффективно лечить болезни и возвращать людей…

Здоровье
Венозная система: строение и функции

Венозная система – важная часть кровообращения организма человека. Благодаря ей происходит отвод шлаков и токсинов, регулируется баланс жидкости в клетках. Здесь движение крови идёт к сердцу и лёгким для обогащения ки…

Здоровье
Сильвиев водопровод: строение и функции

Сильвиев водопровод был известен еще во времена древности. Уже в те времена ученые, заинтересованные в изучении анатомии человека, знали о кровеносной системе и сердце, пищеварительной системе. Но больше всего загадок…

Здоровье
Цилиарное тело (ресничное тело): строение и функции. Схема глаза

Сосудистая оболочка, отвечающая за аккомодацию, адаптацию и питание сетчатки, – очень важная часть строения глазного яблока. Она состоит из нескольких частей, одной из которых является ресничное (цилиарное) тело. В ег…

Здоровье
Что такое вены? Строение и функции. Расширение вен

Что такое вены со «звездочками»? При варикозе на ногах сначала расцветают «звездочки», а потом на поверхности кожи появляются темно-синие вздутые вены. Чаще всего эта болезнь встречается у женщ…

Здоровье
Остеон – это структурная единица кости: строение и функции

В теле человека находится примерно 206 костей, но мало кто знает их строение и понимает, почему они такие прочные. А ведь главную роль в этом играет остеон. Это структурные единицы, из которых построены кости конечнос…

Здоровье
Общий обзор организма человека: системы, строение и функции. Как устроен человек

Человеческий организм – загадочный, сложнейший механизм, который способен не только совершать физические действия, но и чувствовать, мыслить. Общий обзор организма человека показывает, что из семи миллиардов про…

Здоровье
Анатомия шейного позвонка, строение и функции

Позвоночник человека состоит из более чем 30 позвонков, которые объединены в 5 отделов. Это шейный, грудной, поясничный, крестец и копчик. У каждого из отделов позвоночника есть свои функции и особенности строения. Су…

Источник: http://monateka.com/article/184812/

Немембранные органоиды клетки. Строение и функции. Клеточные включения

Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны.

Каждая рибосома состоит из двух частей: малой и большой субъединиц. В первую входят молекулы белка и одна молекула рибосомальной РНК (р–РНК), во вторую – белки и три молекулы р–РНК (рис. 38). Белок и р–РНК по массе в равных количествах участвуют в образовании рибосом. Р–РНК синтезируется в ядрышке.

Рибосомы могут свободно находиться в цитоплазме или быть связанными с эндоплазматической сетью, входя в состав шероховатой ЭПС Белки, образовавшиеся на рибосомах, соединенных с мембраной ЭПС, обычно поступают в цистерны ЭПС. Белки, синтезируемые на свободных рибосомах, остаются в гиалоплазме. Например, на свободных рибосомах синтезируется гемоглобин в эритроцитах.

В митохондриях, пластидах и клетках прокариот также присутствуют рибосомы.

Микротрубочки и микрофиламенты

Микротрубочки – тончайшие трубочки диаметром 24 нм, стенки которых обра-зованы белком тубулином. Глобулярные субъединицы этого белка располагаются по спирали.

Микротрубочки определяют направление перемещения внутриклеточных компонентов, в том числе расхождение хромосом к полюсам клетки при делении ядра. Они участвуют в образовании «цитоскелета».

Микрофиламенты – тонкие белковые нити диаметром 6 нм, состоят из белка актина, близкого тому, который содержится в мышцах. Эти нити, как и микротрубочки, являются элементами «цитоскелета». Они образуют кортикальный слой под плазматической мембраной.

Клеточный центр

Клеточный центр располагается около ядра и состоит из парных центриолей и центросферы .

Центриоли характерны для животных клеток, их нет у высших растений, низших грибов и некоторых простейших. Центриоли окружены зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросферы).

Перед делением ядра в синтетическом периоде центриоли удваиваются. В начале митоза к полюсам клетки направляются по две центриоли. Они принимают участие в формировании веретена деления, состоящего из микротрубочек.

Центриоли участвуют в организации цитоплазматических микротрубочек.

Читайте также:  Значение и разнообразие животного мира - биология

Базальные тельца

Базальные тельца лежат в цитоплазме в основании ресничек и жгутиков и служат для них опорой. Каждое базальное тельце представляет собой цилиндр, образованный девятью триплетами микротрубочек (9+0).

Базальные тельца способны восстанавливать реснички и жгутики после их потери.

Реснички и жгутики можно отнести к органеллам специального назначения. Они встречаются в клетках ресничного эпителия, в сперматозоидах, у простейших, у зооспор водорослей, мхов и т.д.

К органеллам специального назначения относят также миофибриллы мышечных волокон, нейрофибриллы – нервных клеток.

Включения

В цитоплазме клеток присутствуют включения – непостоянные компоненты, выполняющие функцию запаса питательных веществ (капли жира, глыбки гликогена), различных секретов, подготовленных к выведению из клетки. К включениям относят некоторые пигменты (гемоглобин, липофуцин) и другие.

Ядро. Строение и функции.

Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы. В некоторых клетках встречаются.сегментированные ядра. Размеры – от 3 до 10 мкм в диаметре.

Ядро имеет ядерную оболочку, кариоплазму (ядерный сок), одно или несколько ядрышек, хроматин.

· Ядерная оболочка состоит из двух мембран. В ней имеются поры, играющие важную роль в переносе веществ в цитоплазму и из нее. Поры не являются постоянными образованиями. Их число меняется в зависимости от функциональной активности ядра.

Число пор увеличивается в период наибольшей ядерной активности. Ядерная оболочка связана непосредственно с эндоплазматической сетью.

На наружной мембране ядерной оболочки, с внешней стороны находятся рибосомы, синтезирующие специфические белки, образующиеся только на рибосомах ядерной оболочки.

· Ядерный сок (кариоплазма) – внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического материала.

· Ядрышки – обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро.

В ядрышках происходит синтез р–РНК, других видов РНК и образование субъединиц рибосом. Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами.

Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены р–РНК.

· Хроматин (окрашенный материал) – плотное вещество ядра, хорошо окрашиваемое основными красителями. В состав хроматина входят молекулы ДНК в комплексе с белками (гистонами и негистонами), РНК.

Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.



Источник: https://infopedia.su/12x137f.html

Цитоплазма клетки

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества (гиалоплазмы) и находящихся в нем разнообразных внутриклеточных структур (органоидов и включений).

Гиалоплазма (матрикс) — водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящийся в постоянном движении.

Цитоплазматические структуры клетки представлены органоидами и включениями. Органоиды (органеллы) — постоянные и обязательные компоненты большинства клеток, имеющие определенную структуру и выполняющие жизненно важные функции. Включения — непостоянные структуры цитоплазмы в виде гранул (крахмал, гликоген, белки) и капель (жиры).

Органоиды бывают мембранные (одномембранные и двумембранные) и немембранные.

Одномембранные органоиды клетки

К ним относят эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли, образующие единую мембранную систему клетки.

Эндоплазматический ретикулум (эндоплазматическая сеть) — система соединенных между собой полостей, трубочек и каналов, отграниченных от цитоплазмы одним слоем мембраны и разделяющих цитоплазму клеток на изолированные пространства.

Это необходимо, чтобы отделить множество параллельно идущих реакций.

Выделяют шероховатый эндоплазматический ретикулум (на его поверхности расположены рибосомы, на которых синтезируется белок) и гладкий эндоплазматический ретикулум (на его поверхности осуществляется синтез липидов и углеводов).

Аппарат Гольджи (пластинчатый комплекс) представляет собой стопку из 5-20 уплощенных дисковидных мембранных полостей и отшнуровывающихся от них микропузырьков. Его функция — трансформация, накопление, транспорт поступающих в него веществ к различным внутриклеточным структурам или за пределы клетки. Мембраны аппарата Гольджи способны образовывать лизосомы.

Лизосомы — мембранные пузырьки, содержащие гидролитические ферменты. Различают первичные и вторичные лизосомы. Первичные лизосомы — отшнуровывающиеся от полостей аппарата Гольджи микропузырьки, окруженные одиночной мембраной и содержащие набор гидролитических ферментов. Вторичные лизосомы образуются после слияния первичных лизосом с субстратом, подлежащим расщеплению.

Ко вторичным лизосомам относят:

  1. пищеварительные вакуоли — образуются при слиянии первичных лизосом с фагоцитарными и пиноцитарными вакуолями (пищеварительные вакуоли простейших). Их функция — переваривание веществ, поступивших в клетку при эндоцитозе;
  2. остаточные тельца содержат непереваренный материал. Их функция — накопление непереваренных веществ и, обычно, выведение их наружу посредством экзоцитоза;
  3. аутолизосомы — образуются при слиянии первичных лизосом с отработанными органоидами. Их функция — разрушение отработанных частей клетки или клетки целиком (аутолиз).

Вакуоли — наполненные жидкостью мембранные мешки в цитоплазме клеток растений. Они образуются из мелких пузырьков, отщепляющихся от эндоплазматического ретикулума. Мембрана вакуоли называется тонопластом, а содержимое полости — клеточным соком.

В клеточном соке содержатся запасные питательные вещества, растворы пигментов, отходы жизнедеятельности, гидролитические ферменты.

Вакуоли участвуют в регуляции водно-солевого обмена, создании тургорного давления, накоплении запасных веществ и выведении из обмена токсичных соединений.

Пероксисомы — мембранные пузырьки, содержащие набор ферментов. Ферменты пероксисом (каталаза и др.) нейтрализуют токсичную перекись водорода (H2O2), образующуюся как промежуточный продукт при биохимических реакциях, катализируя ее распад на воду и кислород. Пероксисомы также участвуют в метаболизме липидов.

Двумембранные органоиды клетки

В клетках эукариот имеются органоиды, изолированные от цитоплазмы двумя мембранами — это митохондрии и пластиды. Они имеют собственную кольцевую молекулу ДНК, рибосомы мелкого размера и способны делиться.

Это послужило основой появления симбиотической теории возникновения эукариот.

Согласно этой теории в прошлом митохондрии и пластиды являлись самостоятельными прокариотами, перешедшими позднее к эндосимбиозу с другими клеточными организмами.

Митохондрии — двумембранные органоиды, присутствующие во всех эукариотических клетках. Могут быть палочковидной, овальной или округлой формы.

Содержимое митохондрий (матрикс) ограничено от цитоплазмы двумя мембранами: наружной гладкой и внутренней, образующей складки (кристы). В митохондриях образуются молекулы АТФ.

Для этого используется энергия, выделяющаяся при окислении органических соединений.

Пластиды — двумембранные органоиды, характерные только для клеток фотосинтезирующих эукариотических организмов. Имеют две мембраны и гомогенное вещество внутри — строму (матрикс). В зависимости от окраски различают следующие виды пластид.

  1. хлоропласты — зеленые пластиды, в которых протекает процесс фотосинтеза. Наружная мембрана гладкая; внутренняя — формирует систему плоских пузырьков (тилакоидов), которые собраны в стопки (граны). В мембранах тилакоидов содержатся зеленые пигменты хлорофилла, а также каратиноиды;
  2. хромопласты — пластиды, содержащие пигменты каротиноиды, придающие им красную, желтую и оранжевую окраску. Они придают яркую окраску цветам и плодам;
  3. лейкопласты — непигментированные, бесцветные пластиды. Содержатся в клетках подземных или неокрашенных частей растений (корней, корневищ, клубней). Способны накапливать запасные питательные вещества, в первую очередь крахмал, липиды и белки. Лейкопласты могут превращаться в хлоропласты (например, при цветении клубней картофеля) и редко в хромопласты (например, при созревании корнеплода у моркови), а хлоропласты — в хромопласты (например, при созревании плодов).

Немембранные органоиды

К ним относят рибосомы, микротрубочки, микрофиламенты, клеточный центр.

Рибосомы — мелкие органоиды, образованные двумя субъединицами: большой и малой. Они состоят из белков и рРНК. Малая субъединица содержит одну молекулу рРНК и белки, большая — три молекулы рРНК и белки.

Рибосомы могут либо свободно находиться в цитоплазме, либо прикрепляться к эндоплазматическому ретикулуму. На рибосомах происходит синтез белка.

Белки, синтезируемые на рибосомах на поверхности эндоплазматического ретикулума, обычно поступают в его цистерны, а образовавшиеся на свободных рибосомах остаются в гиалоплазме.

Микротрубочки и микрофиламенты — нитевидные структуры, состоящие из сократительных белков и обусловливающие двигательные функции клетки. Микротрубочки имеют вид длинных полых цилиндров, стенки которых состоят из белков — тубулинов.

Микрофиламенты еще более тонкие, длинные, нитевидные структуры, состоящие из белков актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя ее цитоскелет, обусловливают циклоз (ток цитоплазмы), внутриклеточные перемещения органоидов, образуют веретено деления и т.д.

Определенным образом организованные микротрубочки формируют центриоли клеточного центра, базальные тельца, реснички, жгутики.

Клеточный центр (центросома) обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг к другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована девятью триплетами микротрубочек (9 + 0). Центриоли играют важную роль в делении клетки, образуя веретено деления.

Реснички, жгутики — органоиды движения, представляющие собой своеобразные выросты цитоплазмы клетки, покрытые плазматической мембраной. В основании ресничек и жгутиков лежат базальные тельца, служащие им опорой.

Базальное тельце представляет собой цилиндр, образованный девятью триплетами микротрубочек (9 + 0). Базальные тельца способны восстанавливать реснички и жгутики после их потери.

Остов реснички и жгутика также представляет собой цилиндр, по периметру которого располагаются девять парных микротрубочек, а в центре — две одиночные (9 + 2).

Источник: http://jbio.ru/citoplazma-kletki

Мембранные органоиды

Органоиды (от греч. органон – орудие, орган и идос – вид, подобие) – это надмолекулярные структуры цитоплазмы, выполняющие специфичные функции, без которых невозможна нормальная деятельность клетки. По своей структуре органоиды подразделяют на немембранные (не содержащие мембранных компонентов) и мембранные (имеющие мембраны).

Мембранные органоиды (эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии и пластиды) характерны только для эукариотических клеток. К немембранным органоидам относятся клеточный центр эукариотических клеток и рибосомы, имеющиеся в цитоплазме как эу- , так и прокариотических клеток.

Таким образом, единственным универсальным для всех типов клеток органоидом являются рибосомы.

Мембранные органоиды

Основным компонентом мембранных органоидов является мембрана. Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен.

Все клеточные мембраны – это тонкие пленки (толщиной 7–10 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом.

В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду.

Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны – это липидные пленки, в которые встроены интегральные белки.

Одна из основных функций мембран – создание границы между клеткой и окружающей средой и различными отсеками клетки.

Читайте также:  Сохранение человека в условиях увеличения народонаселения, Биология

Липидный бислой проницаем в основном для жирорастворимых соединений и газов, гидрофильные вещества переносятся через мембраны с помощью специальных механизмов: низкомолекулярные – с помощью разнообразных переносчиков (каналов, насосов и др.), а высокомолекулярные – с помощью процессов экзо- и эндоцитоза.

При эндоцитозе определенные вещества сорбируются на поверхности мембраны (за счет взаимодействия с белками мембраны). В этом месте образуется впячивание мембраны внутрь цитоплазмы. Затем от мембраны отделяется пузырек, внутри которого содержится переносимое соединение.

Таким образом, эндоцитоз – это перенос в клетку высокомолекулярных соединений внешней среды, окруженных участком мембраны. Обратный процесс, то есть экзоцитоз – это перенос веществ из клетки наружу. Он происходит путем слияния с плазматической мембраной пузырька, заполненного транспортируемыми высокомолекулярными соединениями.

Мембрана пузырька сливается с плазматической мембраной, а его содержимое изливается наружу.

Каналы, насосы и другие переносчики – это молекулы интегральных белков мембраны, обычно образующие в мембране пору.

Кроме функций разделения пространства и обеспечения избирательной проницаемости мембраны способны воспринимать сигналы. Эту функцию осуществляют белки-рецепторы, связывающие сигнальные молекулы.

Отдельные белки мембраны являются ферментами, осуществляющими определенные химические реакции.

Одномембранные органоиды
1. Эндоплазматическая сеть (ЭПС) ЭПС – это одномембранный органоид, состоящий из полостей и канальцев, соединенных между собой. Эндоплазматическая сеть структурно связана с ядром: от наружной мембраны ядра отходит мембрана, образующая стенки эндоплазматической сети. ЭПС бывает 2 видов: шероховатая (гранулярная) и гладкая (агранулярная).

В любой клетке присутствуют оба вида ЭПС. На мембранах шероховатой ЭПС располагаются многочисленные мелкие гранулы – рибосомы, специальные органоиды, с помощью которых синтезируются белки. Поэтому нетрудно догадаться, что на поверхности шероховатой ЭПС синтезируется белки, которые проникают внутрь шероховатой ЭПС и по ее полостям могут переместиться в любое место клетки.

Мембраны гладкой ЭПС лишены рибосом, но зато в ее мембранах встроены ферменты, осуществляющие синтез углеводов и липидов. После синтеза углеводы и липиды тоже могут перемещаться по мембранам ЭПС в любое место клетки Степень развития вида ЭПС зависит от специализации клетки.

Например, в клетках, синтезирующих белковые гормоны, будет лучше развита гранулярная ЭПС, а в клетках , синтезирующих жироподобные вещества – агранулярная ЭПС. Функции ЭПС: 1. Синтез веществ. На шероховатой ЭПС синтезируются белки, а на гладкой – липиды и углеводы. 2. Транспортная функция. По полостям ЭПС синтезированные вещества перемещаются в любое место клетки. 2.

Комплекс Гольджи Комплекс Гольджи (диктиосома) представляет собой стопку плоских мембранных мешочков, которые называются цистернами. Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки.

От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи. Функции комплекса Гольджи 1.

В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды), полисахариды. 2. В комплексе Гольджи происходит накопление веществ и их временное «хранение» 3.

Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке. 4. В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами). 3. Лизосомы («лизис» – распад, растворение) Лизосомы – мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты.

Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ. Функции лизосом: 1.

Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии. 2. Разрушают старые, поврежденные, избыточные органоиды.

Ращепление органоидов может происходить и во время голодания клетки. 3. Осуществляют аутолиз (расщепление) клетки (рассасывание хвоста у головастиков, разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.). 4. Вакуоли Вакуоли – сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ.

К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли, пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки – мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция – транспорт веществ по клетке, олсуществление взаимосвязи между органоидами.

В клетке растений на долю вакуолей приходится до 90% объема. В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки – тонопласт, ее содержимое – клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки.

Вакуоли поставляют воду для процессов фотосинтеза. В состав клеточного сока могут входить: – запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки). – вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.

) – фитогормоны, фитонциды, – пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый.

Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды Канальцево-вакуолярная система клетки (система транспорта и синтеза веществ) ЭПС, комплекс Гольджи, лизосомы и вакуоли составляют единую канальцево-вакуолярную систему клетки. Все ее элементы имеют сходный химический состав мембран, поэтому возможно их взаимодействие. Все элементы КВС берут начало от ЭПС. От ЭПС отшнуровываются вакуоли, поступающие к комплексу Гольджи, от комплекса Гольджи отшнуровываются пузырьки, сливающиеся с мембраной клетки, лизосомы. Значение КВС: 1. Мембраны КВС делят содержимое клетки на отдельные отсеки (компартменты), в которых протекают определенные процессы. Это делает возможным одновременное протекание в клетке различных процессов, иногда прямопротивоположных. 2. В результате деятельности КВС происходит постоянное обновление мембраны клетки.

Двумембранные органоиды

Двумембранный органоид – это полая структура, стенки которой образованы двойной мембраной. Известно 2 вида двумембранных органоидов: митохондрии и пластиды. Митохондрии характерны для всех клеток эукариот, пластиды встречаются только в клетках растений.

Митохондрии и пластиды являются компонентами энергетической системы клетки, так в результате их функционирования синтезируется АТФ. Митохондрия – двумембранный полуавтономный органоид, осуществляющий синтез АТФ.

Форма митохондрий разнообразна, они могут быть палочковидными, нитевидными или шаровидными. Стенки митохондрий образованы двумя мембранами: внешней и внутренней. Внешняя мембрана – гладкая, а внутренняя образует многочисленные складки – кристы.

Во внутренней мембране встроены многочисленные ферментные комплексы, которые осуществляют синтез АТФ.

В клетках растений есть особые двумембранные органоиды – пластиды. Различают 3 вида пластид: хлоропласты, хромопласты, лейкопласты.
Хлоропласты имеют оболочку из 2 мембран. Наружная оболочка гладкая, а внутренняя образует многочисленные пузырьки (тилакоиды). Стопка тилакоидов – грана.

Граны располагаются в шахматном порядке для лучшего проникновения солнечного света. В мембранах тилакоидов встроены молекулы зеленого пигмента хлорофилла, поэтому хлоропласты имеют зеленый цвет. С помощью хлорофилла осуществляется фотосинтез.

Таким образом, главная функция хлоропластов – осуществление процесса фотосинтеза.

Хромопласты – пластиды, имеющие красную, оранжевую или желтую окраску. Окраску хромопластам придают пигменты каротиноиды, которые расположены в матриксе. Тилакоиды развиты слабо или вообще отсутствуют.

Точная функция хромопластов неизвестна. Возможно, они привлекают к созревшим плодам животных. Лейкопласты – бесцветные пластиды, расположены в клетках бесцветных тканей. Тилакоиды неразвиты.

В лейкопластах накапливается крахмал, липиды и белки.

Пластиды могут взаимно превращаться друг в друга: лейкопласты – хлоропласты – хромопласты.



Источник: http://biofile.ru/bio/5032.html

Немембранные органоиды

В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр.

Рибосома

Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20–30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити

м-РНК (матричной, или информационной РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой.

Схема строения и микрофотография рибосом (на фото – полисома)

Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Клеточный центр

Клетки всех животных, некоторых грибов, водорослей, низших растений характеризуются наличием клеточного центра. Клеточный центр обычно располагается рядом с ядром.

Схема строения и микрофотография клеточного центра

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300–500 нм.

Центриоли расположены взаимно перпендикулярно. Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Микротрубочки

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета – 15 нм, толщина стенки – около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, цент-риолей, веретена деления, ресничек.

Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации. Причем соотношение их определяется количеством микротрубочек.

Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию). Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Иногда образуют пучки. Виды микрофиламентов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амёбоидные), играют роль клеточного каркаса, участвуют в организации перемещений органелл и участков цитоплазмы внутри клетки;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра. Выполняют опорную (каркасную) роль. В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Дата добавления: 2017-09-01; просмотров: 724;

Источник: https://poznayka.org/s95542t1.html

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]