Тест по биологии «Биосферный уровень»
Самая большая экосистема.
гидросфера
атмосфера
биосфера
Биосфера – это геологическая оболочка Земли, охватывающая часть атмосферы, всю гидросферу и верхнюю часть литосферы вместе с населяющими их организмами. Биосфера – самая большая экосистема, объединяющая в единый планетарный круговорот отдельные круговороты веществ каждой из экосистем.
Жизненные среды биосферы.
водная, почвенная
наземно-воздушная среда
оба ответа правильные
В пределах биосферы можно выделить четыре основные среды обитания. Это водная,наземно-воздушная, почвенная среда и образуемая самими живыми организмами. Вода служит средой обитания для многих организмов. Из воды они получают все необходимые для жизни вещества: пищу, воду, газы.
Поэтому, как бы ни были разнообразны водные организмы, все они должны быть приспособлены к главным особенностям жизни в водной среде. Эти особенности определяются физическими и химическими свойствами воды.
Наземно-воздушная среда, освоенная в ходе эволюции позже водной, более сложна и разнообразна, и её населяют более высокоорганизованные живые организмы. Наиболее важным фактором в жизни обитающих здесь организмов являются свойства и состав окружающих их воздушных масс.
Плотность воздуха гораздо ниже плотности воды, поэтому у наземных организмов сильно развиты опорные ткани — внутренний и наружный скелет. Формы движения очень разнообразны: бегание, прыгание, ползание, полёт и др. в воздухе летают птицы и некоторые виды насекомых.
Потоки воздуха разносят семена растений, споры, микроорганизмы. Жизнь почвы необычайно богата. Некоторые организмы проводят в почве всю свою жизнь, другие — часть жизни. Условиями жизни в почве во многом определяются климатическими факторами, важнейшим из которых является температура.
Тела многих организмов служат жизненной средой для других организмов. Условия жизни внутри другого организма характеризуются большим постоянством по сравнению с условиями внешней среды. У них не развиты органы чувств или органы движения, зато возникают приспособления для удерживания в теле хозяина и эффективного размножения.
Явление, при котором вещество передаётся по замкнутым циклам, многократно циркулируя между организмами и окружающей средой.
пищевая цепь
круговорот веществ
нет правильного ответа
Биосферный круговорот непременно включает живые и неживые компоненты. Органическое вещество может быть вновь использовано растениями только после разложения редуцентами до неорганических составляющих. Связь между живым и неживым веществом в биосферном круговороте осуществляет миграция химических элементов, входящих в состав как органических, так и неорганических соединений.
Основной источник энергии в биосфере.
Солнце
залежи нефти
продуценты
Основным источником энергии для поддержания жизни в биосфере является Солнце. Его энергия преобразуется в энергию органических соединений в результате фотосинтетических процессов, происходящих в фототрофных организмах.
Энергия накапливается в химических связях органических соединений, служащих пищей растительноядным и плотоядным животным. Органические вещества пищи разлагаются в процессе обмена веществ и выводятся из организма.
Выделенные или отмершие остатки разлагаются бактериями, грибами и некоторыми другими организмами. Образовавшиеся химические соединения и элементы вовлекаются в круговорот веществ. Биосфера нуждается в постоянном притоке внешней энергии, т.к. вся химическая энергия превращается в тепловую.
Поэтому запасание растениями солнечной энергии в органических веществах играет исключительно важную роль в распределении и численности живых организмов.
Залежи нефти, каменного угля, торфа образовались в процессе круговорота:
азота, водорода
кислорода
углерода
В палеозойской эре происходит начальный этап накапливания нефти и газа органического происхождения углерода. В каменноугольном периоде на суше широко распространились леса, состоящие главным образом из папоротников и хвощей. Именно из упавших в воду стволов деревьев, не подвергающихся гниению, образуются огромные запасы каменных углей.
Бактерии, расщепляющие мочевину до ионов аммония и углекислого газа, принимают участие в круговороте…
азота и углерода
фосфора и серы
кислорода и углерода
Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина — главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ .
В основе круговорота веществ лежат такие процессы, как…
расселение видов
фотосинтез и дыхание
естественный отбор
Естественным источником углерода, используемого растениями для синтеза органического вещества, служит углекислота, входящая в состав атмосферы или находящаяся в растворённом состоянии в воде. В процессе фотосинтеза углекислота превращается в органическое вещество, служащее пищей животным. Дыхание, брожение и сгорание топлива возвращают углекислоту в атмосферу.
Клубеньковые бактерии включают в круговорот…
Циркуляция биогенных элементов обычно сопровождается их химическими превращениями. Нитратный азот, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В биохимическом цикле азота действуют различные механизмы, как биологические, так и химические.
Солнечная энергия улавливается…
продуцентами
редуцентами
консументами первого порядка
Лишь зелёные растения способны фиксировать световую энергию и использовать в питании простые неорганические вещества. Такие организмы выделяют в самостоятельную группу и называют автотрофами, или продуцентами — производителями биологического вещества.
Они являются важнейшей частью любого сообщества, потому, что практически все остальные организмы прямо или косвенно зависят от снабжения веществом и энергией, запасёнными растениями.
На суше автотрофы — это обычно крупные растения с корнями, тогда как в водоёмах их роль берут на себя микроскопические водоросли, обитающие в толще воды (фитопланктон).
Усилению парникового эффекта, по мнению учёных, в наибольшей степени способствует:
озон
углекислый газ
двуокись азота
Парниковый эффект – это явление, при котором атмосферные газы (водяной пар, углекислый газ, метан и озон) удерживают восходящее от Земли тепло в тропосфере, не давая ему подниматься в более высокие слои атмосферы. При этом происходит нагревание, как самой атмосферы, так и земной поверхности.
Круговорот кислорода, углерода и других элементов, вовлекаемых в процесс фотосинтеза, поддерживает современный состав атмосферы, необходимый для существования жизни на Земле. Фотосинтез препятствует увеличению концентрации СО2, предотвращая перегрев земли вследствие так называемого парникового эффекта.
Озон, который образует озоновый экран, формируется в:
гидросфере
мантии Земли
атмосфере
Первые живые организмы развивались в воде, которая защищала их от воздействия ультрафиолетовых лучей.
Кислород, выделявшийся в процессе фотосинтеза, в верхних слоях атмосферы под действием ультрафиолетовых лучей превращался в озон (его молекула содержит три атома кислорода — О3).
По мере накопления озона произошло образование озонового слоя, который как экран, надёжно защитил поверхность Земли от губительных для живых организмов ультрафиолетовой солнечной радиации. Это позволило живым организмам выйти на сушу и заселить её.
Наибольшее количество видов находится в экосистемах:
влажного тропического леса
тайги
листопадных лесов умеренного пояса
В наши дни на Земле известно около 500 тыс. видов растений, и каждый год ботаники открывают новые. Разнообразие видов растений (флористическое) существенно различается в природных регионах планеты. Очевидно, что в пустынях видов гораздо меньше, чем в джунглях.
Но как определить, где больше видов — в степях или в лесах и почему, например, в вечнозелёных тропических лесах их больше, чем в широколиственных. На эти вопросы отвечает наука биогеография, которая изучает географические закономерности формирования биологического разнообразия на Земле.
Для того чтобы оценить, какие территории бедны видами, а какие богаты, составляют карты биоразнообразия. На них разными цветами отображают области с различным числом видов, приходящихся на единицу площади.
Конкретной (или локальной) флорой называют количество высших сосудистых растений на площади примерно в 100 км2. На островах Франца-Иосифа в приполярной области оно не превышает 50-100 видов, в тундре составляет 200-300, в тайге — 400-600, в лесостепи достигает 900 видов, в степях — 900-1000, в тропиках — более 1000.
Наиболее опасной причиной обеднения биологического разнообразия — важнейшего фактора устойчивости биосферы — является…
химическое загрязнение среды
прямое истребление
разрушение мест обитания
Биологическое разнообразие – это все биологические виды и биотические сообщества, которые сформировались и формирующиеся а настоящее время в разных средах обитания (почвенных, наземных, пресноводных, морских). Это – основа поддержания жизнеобеспечивающих функций биосферы и существования человека.
Но любое вторжение человека в экосистемы биосферы, как правило, вызывает цепь экологических последствий. Планомерные лесные вырубки, которые регулируют состав и качество леса и необходимы для удаления поврежденных и больных деревьев.
Но сплошная вырубка, проводимая человеком для освобождения земли под пашни, дороги, промышленные предприятия, города и т.д. ведет к понижению уровня грунтовых вод и, как следствие, к обмелению рек, засухам, засыханию почвы.
После вырубки леса тенелюбивые растения оказываются в условиях открытого местообитания, где испытывают неблагоприятное воздействие прямого света. Это ведет к угнетению и даже исчезновению некоторых видов (например, кислицы обыкновенной, майника двулистного и др.). На месте вырубок поселяются светолюбивые растения.
Меняется и животный мир связанный с фитоценозом. Животные исчезают или перебираются в другие экосистемы. Все эти (и другие факторы) разрушают привычные места обитания живых организмов.
Необходимое условие для жизнедеятельности организмов и их существовании в экосистемах.
круговорот веществ и энергии
пищевая сеть
пищевая цепь
Круговорот веществ и энергии в экосистемах обусловлен жизнедеятельностью организмов и является необходимым условием их существования. Круговороты не замкнуты, поэтому химические элементы накапливаются во внешней среде и организмах. Углерод поглощается растениями в процессе фотосинтеза и выделяется организмами в процессе дыхания.
Он так же накапливается в среде в виде топливных ископаемых, а в организмах в виде запасов органических веществ. Азот превращается в соли аммония и нитраты в результате деятельности азотфиксирующих и нитрифицирующих бактерий. Затем, после использования соединений азота организмами и денитрификации редуцентами азот возвращается в атмосферу.
Сера находится в виде сульфидов и свободной серы в составе морских осадочных пород и почвы. Превращаясь в сульфаты, в результате окисления серобактериями, она включается в ткани растений, затем вместе с остатками их органических соединений подвергается воздействию анаэробных редуцентов. Образовавшийся в результате их деятельности сероводород снова окисляется серобактериями.
Фосфор содержится в составе фосфатов горных пород, в пресноводных и океанических отложениях, в почвах. В результате эрозии фосфаты вымываются и, в кислой среде переходят в растворимое состояние с образованием фосфорной кислоты, которая усваивается растениями. В тканых животных фосфор входит в состав нуклеиновых кислот, костей.
В результате разложения редуцентами остатков органических соединений, он снова возвращается в почвы, а затем в растения.
Одна из особенностей живого вещества.
способность быстро занимать всё свободное пространство
способность к размножению
способность к фотосинтезу
К основным особенностям живого вещества относится:
- Способность быстро осваивать все свободное пространство.
- Движение не только пассивное, но и активное.
- Устойчивость при жизни и быстрое разложение после смерти.
- Высокая адаптация к различным условиям.
- Высокая скорость протекания реакций.
Подробный ответ
Источник: http://biouroki.ru/test/117.html
Уровни организации живых систем. Экология как наука
Живая природа представляет собой сложноорганизованную соподчиненную (иерархичную) систему, состоящую из разных биологических систем (биосистем).
Биологическая система (биосистема) — биологический объект, состоящий из взаимосвязанных и взаимодействующих элементов и обладающий способностью к развитию, самовоспроизведению и приспособлению к среде.
Например, амеба обыкновенная представляет собой биосистему, состоящую из оболочки, ядра и цитоплазмы, содержащей органоиды.
Все ее структурные элементы взаимодействуют между собой и обеспечивают амебе способность к размножению и существованию в водной среде.
Примером биосистемы может служить любое покрытосеменное растение, состоящее из взаимосвязанных органов — корня, стебля, листьев, цветков и плодов. Благодаря этим структурным элементам растение может размножаться и приспосабливаться к жизни в наземной среде.
Смешанный или хвойный лес также является примером биосистемы. Лес состоит из популяций разных видов растений, животных, грибов и микроорганизмов. Эти популяции взаимодействуют между собой и обеспечивают его развитие и устойчивое существование в данной среде.
На основании особенностей проявления свойств живого выделяют несколько уровней организации жизни.
Первый уровень — молекулярный. Элементарными единицами этого уровня являются биомолекулы: нуклеиновые кислоты, белки, липиды, углеводы и другие органические со единения, которые вступают во взаимодействие между собой и формируют более сложные системы. Этот уровень организации жизни изучают молекулярная биология и биологическая химия.
Следующим уровнем организации жизни является клеточный уровень. Элементарные единицы этого уровня — клетки. Их структурными элементами выступают компоненты, состоящие из взаимосвязанных биомолекул. Клетку как структурную и функциональную единицу жизни изучает наука цитология.
Клетки, взаимодействуя, формируют ткани, из которых образуются органы. Органы и ткани представляют органотканевый уровень организации жизни. Ткани изучает гистология, а органы — анатомия и физиология.
Организменный уровень организации жизни представляют организмы (особи) — целостные саморегулирующиеся системы, состоящие из взаимосвязанных тканей и органов. Растительные организмы изучает ботаника, животные организмы — зоология.
Следующим уровнем организации жизни является популяционно-видовой уровень. Родственные особи объединяются в популяции, а популяции составляют виды.
Следующий уровень организации жизни — биоценотический. Элементарными единицами этого уровня являются биоценозы (сообщества). Они формируются из популяций разных видов, длительно обитающих в одной и той же среде, между которыми возникают межвидовые связи и взаимоотно шения.
Биогеоценотический уровень организации жизни является еще более сложным. Его представляют биологические системы — биогеоценозы (экосистемы). Они возникают в результате взаимодействия биоценозов и условий среды.
Самый высший уровень организации жизни — биосферный. Совокупность всех экосистем на планете Земля, связанных непрерывным круговоротом вещества и потоком энергии, называют биосферой. Она представляет собой глобальную по масштабам и сложности биологическую систему.
Экология как наука
Термин «экология» (от греч. oikos — дом, жилище, logos — наука, учение) впервые ввел немецкий зоолог-эволюционист Э. Геккель в 1866 г. Под экологией он понимал науку об отношениях организмов с окружающей средой.
На начальном этапе экология представляла собой науку, изучающую взаимодействия организмов (особей). В настоящее время предмет экологии значительно расширился. Помимо организмов, он включает надорганизменные биосистемы: популяции, биоценозы (сообщества), биогеоценозы (экосистемы) и биосферу.
Экология — наука, изучающая биологические системы разного уровня организации (от организма до биосферы) и закономерности их взаимодействия.
Перед экологией стоят следующие задачи:
- изучение реакций организмов на воздействующие на них факторы;
- изучение свойств и структуры популяций, динамики и механизмов регуляции их численности;
- изучение биологического разнообразия экосистем, закономерностей образования и распределения в них биологической продукции;
- изучение процессов, протекающих в биосфере, с целью достижения ее устойчивости;
- разработка оптимальных путей взаимодействия человека и природы с учетом законов существования природы.
Таким образом, экология является научной основой рационального использования и охраны природных ресурсов. Это важнейшая наука будущего и, как писал французский эколог Ф. Дре еще в 1976 г., «возможно, само существование человека на нашей планете будет зависеть от прогресса экологии».
Источник: http://jbio.ru/urovni-organizacii-zhivyx-sistem-ekologiya-kak-nauka
Определение жизни. Уровни организации жизни
Основные свойства живых организмов. Вопросы о происхождении жизни, закономерностях исторического развития в различные геологические эпохи всегда интересовали человечество. Понятие жизнь охватывает совокупность всех живых организмов на Земле и условия их существования.
Сущность жизни заключается в том, что живые организмы оставляют после себя потомство. Наследственная информация передается из поколения в поколение, организмы саморегулируются и восстанавливаются при воспроизводстве потомства. Жизнь — это особая качественная, наивысшая форма материи, способная, оставляя потомство, к самовоспроизведению.
Понятию жизнь в разных исторических периодах давались различные определения. Первое научно правильное определение дал Ф. Энгельс: “Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел”.
При прекращении процесса обмена веществ между живыми организмами и окружающей средой белки распадаются, и жизнь исчезает. Опираясь на современные достижения биологической науки, русский ученый М. В.
Волькенштейн дал новое определение понятию жизнь: “Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот”. Это определение не отрицает наличие жизни и на других планетах космического пространства.
Жизнь называется открытой системой, на что указывает непрерывный процесс обмена веществ и энергии с окружающей средой.
На основании последних научных достижений современной биологической науки дано следующее определение жизни: “Жизнь — это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров — белков и нуклеиновых кислот”. Основой всего живого считаются нуклеиновые кислоты и белки, так как они функционируют в клетке, образовывают сложные соединения, которые входят в структуру всех живых организмов.
,
Основные свойства живых организмов
Живые организмы отличаются от неживой природы присущими им свойствами. К характерным свойствам живых организмов относятся: единство химического состава, обмен веществ и энергии, сходство уровней организации. Для живых организмов характерны также размножение, наследственность, изменчивость, рост и развитие, раздражимость, дискретность, саморегуляция, ритмичность и др.
Уровни организации жизни
Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность. Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.
1.
Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень. Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений.
Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макромолекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии.
С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.
2. Клеточный уровень. Клетка является структурной и функциональной единицей всех живых организмов на Земле.
Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности.
У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных — амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.
Тканевый уровень
Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом.
Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная.
Вспомните строение и функции отдельных тканей.
Органный уровень
У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень.
В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм.
Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.
Организменный уровень
Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм)А отдельная особь многоклеточных организмов считается как отдельный организм.
В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство.
У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм.
Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.
Популяционно-видовой уровень
Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.
Биогеоценотический уровень
Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом.
В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому.
Биогеоценоз включает неорганические, органические соединения и живые организмы.
Биосферный уровень
Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека.
Главную роль в биосферном уровне выполняют “живые вещества”, т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение “биокосные вещества”, образовавшиеся в результате жизнедеятельности живых организмов и “косных” веществ (т. е. условий окружающей среды.
На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.
Уровни организации органического мира – дискретные состояния биологических систем, характеризующиеся соподчиненностью, взаимосвязанностью, специфическими закономерностями.
Структурные уровни организации жизни чрезвычайно многообразны, но основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, бигиоценотический и биосферный.
жизни. Важнейшими задачами биологии на этом этапе является изучение механизмов передачи генной информации, наследственности и изменчивости.
Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов – непосредственное преобразование самих генов под воздействием внешних факторов. Факторами, вызывающими мутацию, являются: радиация, токсические химические соединения, вирусы.
Еще один механизм изменчивости – рекомбинация генов. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации.
Еще один механизм изменчивости был открыт лишь в 1950 –е гг. Это – неклассическая рекомбинация генов, при котором происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами.
Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию.
Цитология – наука, изучающая живую клетку, ее строение, функционирование как элементарной живой системы, исследует функции отдельных клеточных компонентов, процесс воспроизводства клеток, приспособление к условиям среды и др.
Также цитология исследует особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология была названа физиологией клетки.
Значительным продвижением в изучении клеток произошло в начале 19 века, было открыто и описано клеточное ядро. На основании этих исследований и была создана клеточная теория, ставшая величайшим событием в биологии 19 в. Именно эта теория послужила фундаментом для развития эмбриологии, физиологии, теории эволюции.
Важнейшая часть всех клеток – ядро, которое хранит и воспроизводит генетическую информацию, регулирует процессы обмена веществ в клетке.
Все клетки делятся на две группы:
· Прокариоты – клетки, лишенные ядра
· Эукариоты – клетки содержащие ядра
Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы разделить на два типа:
· Автотрофные – сами производят необходимые им питательные вещества
· Гетеротрофные – не могут обходиться без органической пищи.
Позднее были уточнены такие важные факторы, как способность организмов синтезировать необходимые вещества (витамины, гормоны), обеспечивать себя энергией, зависимость от экологической среды и др. Таким образом, сложный и дифференцированный характер связей свидетельствует о необходимости системного подхода к изучению жизни и на онтогенетическом уровне.
Многоклеточные организмы. Этот уровень возник в результате формирования живых организмов. Основной единицей жизни выступает отдельная особь, а элементарным явлением – онтогенез. Изучением функционирования и развития многоклеточных живых организмов занимается физиология.
Эта наука рассматривает механизмы действия различных функций живого организма, их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела это и есть процесс онтогенеза – развитие организма от рождения до смерти.
При этом происходит рост, перемещение отдельных структур, дифференциация и усложнение организма.
Все многоклеточные организмы состоят из органов и тканей. Ткани – это группа физически объединенных клеток и межклеточных веществ для выполнения определенных функций. Их изучение является предметом гистологии.
Органы – это относительно крупные функциональные единицы, которые объединяют различные ткани в те или иные физиологические комплексы. В свою очередь органы входят в состав более крупных единиц – систем организма. Среди них выделяют нервную, пищеварительную, сердечнососудистую, дыхательную и другие системы. Внутренние органы есть только у животных.
Это надорганизменный уровень жизни, основной единицей которого является популяция.
В отличии от популяции видом называется совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство.
Вид существует только через популяции, представляющие генетически открытые системы. Изучением популяций занимается популяционная биология.
Термин “популяция” был введен одним из основоположником генетики В. Иогансеном, который назвал так генетически неоднородную совокупность организмов. Позднее популяция стала считаться целостной системой, непрерывно взаимодействующей с окружающей средой. Именно популяции являются теми реальными системами, через которые существуют виды живых организмов.
Популяции – генетически открытые системы, так как изоляция популяций не абсолютна и периодически не бывает возможным обмен генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции, изменения их генофонда ведут к появлению новых видов.
Популяции, способны к самостоятельному существованию и трансформации, объединяются в совокупности следующего надорганизменного уровня – биоценозы. Биоценоз – совокупность популяций, проживающих на определенной территории.
Биоценоз представляет собой закрытую для чужих популяций систему, для составляющих его популяций – это открытая система.
Биогеоценоз – устойчивая система, которая может существовать на протяжении длительного времени. Равновесие в живой системе динамично, т.е. представляет собой постоянное движение вокруг определенной точки устойчивости.
Для ее стабильного функционирования необходимо наличие обратных связей между ее управляющей и исполняющей подсистемами.
Такой способ поддержания динамического равновесия между различными элементами биогеоценоза, вызвано массовым размножением одних видов и сокращением или исчезновением других, приводящее к изменению качества окружающей среды, называют экологической катастрофой.
Биогеоценоз – это целостная саморегулирующаяся система, в которой выделяется несколько типов подсистем. Первичные системы – продуценты, непосредственно перерабатывающие неживую материю; консументы – вторичный уровень, на котором вещество и энергия получаются за счет использования продуцентов; затем идут консументы второго порядка. Также существуют падальщики и редуценты.
Через эти уровни в биогеоценозе проходит круговорот веществ: жизнь участвует в использовании, переработки и восстановлении различных структур. В биогеоценозе – однонаправленный энергетический поток. Это делает его незамкнутой системой, непрерывно связанной с соседними биогеоценозами.
Саморегуляция биогеоценлзов протекает тем успешнее, чем разнообразнее количество составляющих его элементов. От многообразия его компонентов зависит и устойчивость биогеоценозов. Выпадение одного или нескольких компонентов может привести к необратимому нарушению равновесия и гибели его как целостной системы.
Это наивысший уровень организации жизни, охватывающий все явления жизни на нашей планете. Биосфера – это живое вещество планеты и преобразованная им окружающая среда. Биологический обмен веществ – это фактор, который объединяет все другие уровни организации жизни в одну биосферу.
На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций – важнейшая задача биологии на этом уровне жизни.
Занимаются изучением этих проблем экология, биоценология и биогеохимия.
Разработка учения о биосфере неразрывно связана с именем выдающегося российского ученого В.И. Вернадского. Именно ему удалось доказать связь органического мира нашей планеты, выступающего в виде единого нераздельного целого, с геологическими процессами на Земле. Вернадский открыл и изучил биогеохимические функции живого вещества.
Источник: http://oadk.at.ua/load/biologija/lekcii_po_biologii/opredelenie_zhizni_urovni_organizacii_zhizni/56-1-0-2460
Биосферный уровень организации жизни
Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого.
Биология(греч. bios- «жизнь»; logos — учение) — наука о жизни (живой природе), одна из естественных наук, предметом которой являются живые существа и их взаимодействие с окружающей средой.
Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле.
Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.
Связь биологии с другими науками:Биология тесно связана с другими науками и иногда очень трудно провести грань между ними. Изучение жизнедеятельности клетки включает в себя изучение молекулярных процессов протекающих внутри …
клетки, этот раздел называется молекулярная биология и иногда относится к химии а не к биологии.
Химические реакции протекающие в организме изучает биохимия, наука которая существенно ближе к химии чем к биологии. Многие аспекты физического функционирования живых организмов изучает биофизика, которая очень тесно связана с физикой.
Изучение большого количества биологических объектов неразрывно связано с такими науками как математическая статистика. Иногда как независимую науку выделяют экологию — науку о взаимодействии живых организмов с окружающей средой (живой и неживой природы). Как отдельная область знаний давно выделилась наука изучающая здоровье живых организмов.
Эта область включает в себя ветеринарию и очень важную прикладную науку — медицину, отвечающую за здоровье людей.
Значение биологии для медицины:
-Генетические исследования позволили разрабатывать методы ранней диагностики, лечения и профилактики наследственных болезней человека;
-Селекция микроорганизмов позволяет получать ферменты, витамины, гормоны, необходимые для лечения ряда заболеваний;
-Генная инженерия позволяет производить биологически активные соединения и лекарства;
-Познания биологии необходимо для борьбы с инфекционными и паразитическими заболеваниями человека и животных;
Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого:Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений.
В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков, учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь — это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р.
Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи.
Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи».
Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.
Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».
Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам.
Вот одно из них: жизнь — это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии.
Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.
Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.
2. Эволюционно-обусловленные уровни организации жизни:Различают такие уровни организации живой материи — уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.
Молекулярный уровень организации — это уровень функционирования биологических макромолекул — биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов.
С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации.
Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.
Клеточный уровень — это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка — это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.
Тканевый уровень организации — это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.
Органный уровень организации — это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.
Организменный уровень организации — это уровень одноклеточных, колониальных и многоклеточных организмов.
Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида.
Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.
Популяционно-видовой уровень — это уровень совокупностей особей — популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.
Биогеоценотический уровень организации жизни —представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни.
Компоненты— Популяции различных видов; Факторы среды;Пищевые сети, потоки веществ и энергии;Основные процессы; Биохимический круговорот веществ и поток энергии, поддерживающие жизнь;Подвижное равновесие между живыми организмами и абиотической средой (гомеостаз);Обеспечение живых организмов условиями обитания и ресурсами (пищей и убежищем).Науки, ведущие исследования на этом уровне: Биогеография, Биогеоценология Экология
Биосферный уровень организации жизни
Представлен высшей, глобальной формой организации биосистем — биосферой. Компоненты –Биогеоценозы; Антропогенное воздействие; Основные процессы; Активное взаимодействие живого и неживого вещества планеты; Биологический глобальный круговорот веществ и энергии;
Активное биогеохимическое участие человека во всех процессах биосферы, его хозяйственная и этнокультурная деятельность
Науки, ведущие исследования на этом уровне: Экология; Глобальная экология; Космическая экология; Социальная экология.
Источник: http://refac.ru/biosfernyj-uroven-organizacii-zhizni/
Биосферный (биогеоценотический) уровень
⇐ ПредыдущаяСтр 4 из 11Следующая ⇒
Как правило, биоценозы состоят из нескольких популяций и являются компонентами уже более сложной биологической системы – биогеоценоза.
Биогеоценоз представляет собой единство живого (биоценоза) и неживого, то есть определенного участка земной поверхности (биотопа). Биогеоценоз – это подвижная, открытая, развивающаяся система.
Она постоянно обменивается веществом и энергией с другими биогеоценозами и с окружающим пространством.
Биогеоценоз как целостная саморегулирующаяся система состоит из нескольких подсистем. Это первичные системы – продуценты. Они перерабатывают неживую материю, превращая ее в органическое вещество своих тел (растения, водоросли, некоторые микроорганизмы).
Вторичные системы представлены консументами, которые получают энергию за счет органического вещества, синтезированного продуцентами (все травоядные животные), далее идут консументы второго порядка – хищники.
Живые организмы после своего отмирания (органический детрит) перерабатываются редуцентами, то есть микроорганизмами, разлагающими остатки органической материи до минеральных веществ. Эти вещества, попадая в почву, вновь используются растениями, и круговорот веществ замыкается.
Следовательно, в биогеоценозе происходит круговорот веществ, в котором живые организмы являются главной движущей силой.
Устойчивость и саморегуляция биогеоценозов увеличивается пропорционально разнообразию составляющих его элементов.
Выпадение одного или нескольких компонентов биогеоценоза может привести к необратимому нарушению равновесия и к его гибели.
Это указывает на тесную взаимосвязь организмов всех уровней в биогеоценозе посредством пищевых цепей и пищевых сетей. В связи с этим высокоорганизованные организмы не могут существовать без более простых.
Совокупность всех биогеоценозов планеты образует биосферу. Биосферный уровень организации живого – это наивысший уровень, охватывающий все явления жизни на Земле.
Живое вещество планеты (совокупность всех живых организмов на планете, в том числе и человека) и преобразованная им окружающая среда – это и есть биосфера. Следовательно, биосферный уровень объединяет все другие уровни организации жизни на Земле.
На этом уровне протекают вещественно-энергетические круговороты, вызванные жизнедеятельностью организмов и образующие в сумме большой биосферный круговорот.
Учение о биосфере разработал В. И. Вернадский. Он доказал тесную связь органического мира на планете как единого нераздельного целого с геологическими процессами. Благодаря биогенной миграции атомов живое вещество выполняет свои геохимические функции и является мощной геологической силой.
Таким образом, мы видим, что вопрос о структурных уровнях в биологии имеет некоторые особенности по сравнению с его рассмотрением в физике. Эта особенность состоит в том, что изучение каждого уровня организации в биологии ставит своей главной целью объяснение феномена жизни.
Действительно, если в физике деление на структурные уровни материи в достаточной степени условно (критериями здесь являются масса и размеры), то уровни материи в биологии отличаются не столько размерами или уровнями сложности, но главным образом, закономерностями функционирования.
Действительно, если, например, исследователь изучил физико-химические свойства биологического объекта и его структуру, но не установил его биологического назначения в целостной системе, это будет означать, что изучен ещё один определенный объект, но не уровень живой материи.
Ещё одна особенность структуризации живой материи состоит в иерархической соподчиненности уровней. Это означает, что низшие уровни как единое целое входят в высшие. Эта концепция структуризации получила название «многоуровневой иерархической матрешки».
Важно отметить, также, что число выделяемых в биологии уровней зависит от глубины профессионального изучения мира живого.
ЕДИНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ И ФУНКЦИОНИРОВАНИЯ ЖИВОГО
В истории биологии видное место занимает борьба материалистического толкования единства, целостности и многообразия живой природы с идеалистическими представлениями о божественном творении животных и растений, о гармонии, приданной миру творцом. С развитием науки материалистические представления о единстве и многообразии живых существ все более конкретизировались и углублялись. Важную роль в этом сыграло изучение великого множества органических форм, населяющих Землю.
При всем многообразии органический мир – не что-то разрозненное и хаотичное. Напротив, он представляет собой единое целое. Единство живой природы, как и мира в целом, выражается в ее материальности. Все виды животных и растений представляют собой различные формы существования живой материи.
Как бы ни отличались друг от друга отдельные виды животных, растений и микроорганизмов, всем им присуще определенное биохимическое единство, выражающееся в общности химического состава (белков, углеводов, жиров, ферментных и гормональных систем и др.
) и близости типов реакций, лежащих в основе процессов ассимиляции и диссимиляции. Одним из выражений такой близости служит, например, сходство химического состава растительного пигмента хлорофилла с животными кровяными пигментами – гемоглобинами и гемоцианинами, обеспечивающими дыхание.
Близки химически ферменты растений и животных, и одинакова общая роль белков и нуклеиновых кислот; у всех животных, от простейших до человека, основные ферменты сходны. Есть и много других признаков удивительной биохимической общности всех отделов органического мира.
В то же время имеются и специфические особенности биохимизма, отличающие животных от растений, бактерии от вирусов, а порой даже одну разновидность от другой.
Сходность основных биохимических и физиологических особенностей животных, растений и микроорганизмов дополняется едиными чертами их строения и особенно тем, что клетка является основой структуры всех организмов.
Существенным моментом, характеризующим единство органического мира, является наличие некоторых общих законов, по которым живут и развиваются все виды животных и растений.
Таков закон единства живого тела и условий жизни, закон естественного отбора, закон взаимосвязи индивидуального и исторического развития организмов и т. д.
Органический мир представляет собой единое целое, но в то же время он дискретен, т. е. состоит из отдельно существующих частей.
Эти части соподчинены и образуют целостную систему, каждая часть обладает самостоятельностью, т. е. в определенных отношениях является и целым.
Обладая известной автономией, части входят в состав более крупных структурных единиц, образуя разные ступени организации – от клетки до органического мира как целого.
Как и всякое вещество, живая материя построена из молекул и атомов. Их взаимодействие, обусловливающее обмен веществ или проявление жизни на молекулярном уровне, изучают биохимия и биофизика.
Следующей по величине частью живого являются клетки, образующие ткани и органы.
Отличаясь высокой степенью интеграции частей, организмы обладают неизмеримо большей автономностью по отношению друг к другу, нежели составляющие их органы и части.
Но автономность организмов (особей, индивидуумов) тоже относительна, они существуют лишь как составные части популяций.
Популяции представляют собой совокупности свободно скрещивающихся особей одного вида, занимающих определенные территории – биотопы.
Совокупность таких территориальных популяций составляет вид, распространенный на определенной части земной поверхности, к условиям которой он приспособился.
Почти каждый вид состоит из различающихся по строению, но в то же время кровнородственных групп индивидуумов; у многих животных личинки не только отличаются по внешнему виду, строению и физиологии, но и живут в других местах либо питаются иной пищей и имеют многие другие особенности.
Также отличаются самцы и самки, а у многих видов насекомых, паразитических червей и других известны пищевые расы, живущие за счет разных кормов или по-разному размножающиеся, например, озимые и яровые расы рыб.
Вид, таким образом, представляет не простое собрание одинаковых индивидуумов, а сложную систему группировок, соподчиненных, тесно связанных друг с другом и тем самым поддерживающих существование друг друга.
Объединение разнородных индивидуумов в популяции, а различных популяций в виды создает много преимуществ в борьбе за существование и обеспечивает более активные отношения вида со средой, поскольку здесь возникают более активные сложные формы групповой жизнедеятельности. Морфологическое разнообразие внутри вида, существование географических рас (подвидов) и биологических форм расширяют использование видом среды и имеют важное значение для успеха его борьбы с другими видами.
Наконец, популяции разных видов образуют сообщества (биоценозы), занимающие отдельные участки земной поверхности.
В каждый биоценоз, где бы он ни находился, входят хлорофиллоносные растения, питающиеся ими растительноядные животные, хищники и паразиты, живущие за счет растительноядных животных, и, наконец, микроорганизмы, минерализующие трупы животных и растений.
Такие сообщества представляют собой целые системы, где существование одних видов без других невозможно, так как их обмен веществ приспособлен друг к другу и одни виды используют продукты метаболизма других видов или их самих в качестве пищи.
В биоценозах на основе взаимодействия составляющих их видов возникают новые формы отношений живых существ с неживой природой. Биоценозы отдельных биотопов и природных зон на основе общего круговорота веществ объединяются в единую систему – органический мир. Экология (биоценология) и биогеография изучают эти сложные системы многих видов.
Все части единого органического мира отличаются не только степенью самостоятельности и автономности, но и тем, что по мере их усложнения на каждой ступени возникают качественно новые, все более сложные проявления жизни, при этом углубляется и расширяется взаимодействие живого с неорганической средой.
Единство многообразной и сложно организованной живой природы выражается во взаимосвязях и взаимодействии качественно различных видов животных, растений и микроорганизмов. Эти взаимоотношения и служат основой возникновения и развития сообществ, состоящих из разных видов. Такова структура органического мира, покоящаяся на основном свойстве живой материи – обмене веществ и энергии со средой.
Будучи единым целым, живая природа не представляет собой какой-то замкнутой автономной системы. Она находится в тесном единстве и взаимодействии с окружающей ее неживой природой.
Тела животных и растений состоят из тех же химических элементов, в них действуют те же химические и физические законы, которые присущи неживой природе. Неживая природа не только породила живое на определенной ступени своего развития, но и является необходимым условием его существования и развития.
Существование жизни обеспечивается взаимодействием каждой особи с окружающей ее абиотической и биотической средами, а также взаимоотношениями всего органического мира как целого с неживой природой. Первое исторически обусловило строение индивидуумов, их приспособленность к определенным условиям.
Второе осуществляется посредством определенной организации видов и образованием сообществ различных форм животных, растений и микроорганизмов.
Единство, тесная взаимосвязь организмов с окружающими абиотической и биотической средами нашли яркое выражение в трудах русского биолога К.Ф. Рулье, русского физиолога И.М. Сеченова. Углубил эти представления о единстве организмов и среды И.В. Мичурин.
«Каждый организм, каждое свойство, каждый член, все внутренние и наружные части всякого организма, – писал он, – обусловлены внешней обстановкой его существования. Если организация растения такова, какова она есть, то это потому, что каждая ее подробность исполняет известную функцию, возможную и нужную только при данных условиях».
Разнообразные формы животных, растений и микроорганизмов отличаются друг от друга величиной, формой, строением, функциями (характером жизнедеятельности), местами обитания (географическим распространением), органическим веществом, синтезируемым с помощью хлорофилла. Помимо растений это делают бактерии – хемосинтетики, использующие при синтезе энергию химических превращений.
За счет растений живут другие организмы. Животные питаются готовыми органическими веществами и являются его потребителями (консументами).
Наконец, значительная часть микроорганизмов (большая часть бактерии и низших грибов – актинолицетов) существует за счёт мертвого органического вещества (трупов животных и растений), разлагая его и возвращая к исходному неорганическому состоянию. Поэтому их называют разрушителями (редуцентами) органического вещества. Другие микроорганизмы ведут паразитический образ жизни, существуя за счет живых растений и животных.
Таким образом, животные, растения и микроорганизмы не просто сосуществуют, а живут за счет друг друга, находятся в необходимой связи, без которой их жизнь невозможна.
Эти связи сложились исторически в ходе развития органического мира в результате противоречий, с одной стороны, между живой и неживой природой, с другой – между организмами, каждый из которых для своих партнеров представляет часть окружающей его среды, причем часть относительно более важную, нежели неорганическая природа.
Источник: https://lektsia.com/6×7162.html