Определение жизни, биология

Часто можно встретить сообщения вроде «астрономы считают, что на планете xxx могла существовать жизнь» или «чтобы найти жизнь, сначала нужно обнаружить признаки наличия воды» и так далее.

Но что они подразумевают под «жизнью»? Все, что умеет только дышать? Или питаться? Или оно должно обязательно передвигаться? Мы особо не задумываемся, когда нас просят отличить живое от неживого: человек — живой, кот — живой, шкаф или машина — неживые.

Однако на самом деле вопрос о том, что такое жизнь, является гораздо более сложным. Великие умы, от Аристотеля до Гессе, предлагали свои объяснения, но… до сих пор не придумали определения жизни, которое можно применить ко всему.

Чем больше мы узнаем, тем сложнее становится ответить на этот вопрос

Научное определение жизни

В чем же проблема? Если в древности люди действительно могли так просто подойти к вопросу жизни (человек — живой, камень — нет), то с развитием технологий эта идея потеряла свой вес.

Ее используют только люди в повседневной жизни. Астрономы же, ученые и химики считают, что под жизнью скрывается гораздо более обширное понятие.

Очень интересно описывает жизнь аэрокосмическое агентство NASA.

Жизнь – химическая система, которая поддерживает сама себя и способна к дарвиновской эволюции.

Однако это лишь одно определение из сотен. Что еще хуже, ученые разных дисциплин выдвигают разные идеи о том, что нужно для определения чего-то живого. С точки зрения физиков, жизнь неразрывно связана с термодинамикой; химики считают, что это набор молекул; биологи — то, что способно эволюционировать.

Признаки живого

Всем нам в школе на уроках биологии рассказывали о семи процессах, которые якобы определяют жизнь: движение, дыхание, чувствительность, рост, размножение, выделение и питание.

Но это далеко не точное утверждение. Есть много вещей, которые мы могли бы запихнуть в эти рамки и назвать живыми.

Некоторые кристаллы, инфекционные белки и вирусы будут «живыми», если исходить из этих семи принципов.

Некоторые считают вирусы живыми, поскольку они обладают информацией, закодированной в ДНК или РНК

Действительно, вирусы живые или нет? С общепринятой точки зрения — нет, поскольку у них нет метаболизма и они остаются инертными до тех пор, пока не столкнутся с клетками. При всем этом вирусы обладают информацией, закодированной в ДНК или РНК.

Это сильный маркер жизни, который имеется у любого живого существа на планете. Он свидетельствует о том, что вирусы могут эволюционировать и размножаться. Но для этого им придется «взламывать» клетки и уничтожать их.

Поэтому некоторые микроблоги являются сторонниками теории «живых вирусов».

Для многих химиков репликация ­— процесс, который вирусы могут проводить только при помощи биологических клеток — помогает определить жизнь. Тот факт, что информационные молекулы — ДНК и РНК — обеспечивают репликацию, предполагает, что они являются важнейшей особенностью жизни.

Жизнь требует движения, — Аристотель.

Жизнь на других планетах

Совсем другое дело — когда о жизни говорят астронавты и ученые, которые занимаются поиском жизни на других планетах.

За основу идеи жизни они берут микроорганизмы, которые способны выживать в экстремальных условиях — например, тихоходки. Эти организмы выступают в роли «тестовых образцов» внеземной жизни.

То есть ученые считают, что инопланетные существа унаследуют ключевые характеристики жизни, которую мы знаем по Земле.

Тихоходки смогут пережить падение астероида и взрыв сверхновой

Но этот подход, как оказалось, содержит множество недоработок.

В конце 70-х годов прошлого века на Марсе высадился аппарат «Викинг-1», который в ходе тестов выяснил, что на Марсе была жизнь: уровень диоксида углерода в марсианской почве был высоким, а значит в ней жили и дышали микробы.

А сейчас диоксид углерода встречается повсеместно и объясняется куда менее захватывающим явлением небиологических окислительных химических реакций. То есть шанс найти таким образом жизнь не выше, чем выиграть в национальную лотерею в США.

В 2010 году открытие бактерий с ДНК, содержащей мышьяк вместо стандартного фосфора, поразило многих астробиологов.

Хотя эту находку с тех пор не раз поставили под сомнение, многие тихо надеются, что жизнь на других планетах не будет следовать классическим правилам.

Сейчас ученые предполагают, что инопланетяне могут быть и на основе кремния, либо использовать другие растворители (не воду). А может для жизни им вообще не нужны питательные вещества — это машины из металла, способные выживать в любой среде.

Проблема в том, что попытка определить жизнь сильно усложняет процесс поиска других организмов. Например, очередной марсоход NASA может проехать мимо марсианина просто потому, что не признает его живым существом. В нем будет запрограммирован определенный набор признаков живого, ни один из которых не подойдет инопланетному существу.

Примерно так происходит забор марсианского грунта

В чем загадка жизни?

Пока что главная загадка в том, чтобы узнать, что такое жизнь. Как мы увидели, зачастую ее определение может не подходить под общепринятые параметры.

Но одно мы пока знаем точно: вещи, которые мы считаем важными, в действительности свойственны лишь жизни на Земле. В конце концов, все на планете, от бактерий до читателей в нашем Telegram-чате, произошло от одного общего предка.

А вот во Вселенной наша земная жизнь может оказаться лишь крошечной точкой среди данных.

Хотя и на Земле мы исследовали далеко не все. Вон совсем недавно была найдена жизнь в одном из самых экстремальных мест планеты.

Пока мы не обнаружили и не изучили альтернативные формы жизни, мы не можем знать, какие признаки, важные для нашей жизни, действительно универсальны. Другими словами, нам нужно найти инопланетян. А пока этого не случилось, можно руководствоваться логикой «человек — живой, камень — нет». Во всяком случае на Земле.

«Что такое жизнь? Понять биологию за пять простых шагов»

На вопрос, что такое жизнь, нет универсального ответа, известно более ста определений жизни. И они сформулированы не только биологами — жизнь определяют с точки зрения химии, физики, танатологии, кибернетики. Самое краткое из них гласит: жизнь это самовоспроизведение с изменениями.

В книге «Что такое жизнь? Понять биологию за пять простых шагов» (издательство «Азбука-Аттикус»), переведенной на русский язык Алексеем Поповым, ответить на этот вопрос и добиться более ясного представления о том, как устроена жизнь, берется лауреат Нобелевской премии в области медицины и физиологии Пол Нёрс.

Он рассматривает «пять великих понятий биологии»: клетка, ген, эволюция путем естественного отбора, жизнь как химический процесс и жизнь как поток информации. Подробно останавливаясь на каждом из них, Нёрс вырабатывает общие признаки, раскрывающие понятие жизни.

N + 1 предлагает своим читателям ознакомиться с отрывком, посвященным многообразию химических реакций в клетках человеческого организма.

Ферменты участвуют почти во всех химических реакциях, лежащих в основе клеточного метаболизма. Но, помимо построения и разрушения других молекул, у них еще много функций. Они контролируют качество, обеспечивают перемещение компонентов и сообщений между разными участками клетки и переносят другие молекулы в клетку и из нее.

Другие ферменты ведут наблюдение за захватчиками, активируя белки, которые защищают клетки и, следовательно, наши тела от болезни. При этом ферменты — не единственный вид белка. Почти каждая часть нашего тела (от волос на голове, кислоты в желудке и до хрусталиков глаз) либо состоит из белков, либо сконструирована белками.

Все эти различные белки совершенствовались тысячелетиями эволюции для выполнения специальных функций в клетке. Даже сравнительно простая клетка содержит гигантское количество белковых молекул.

В общей сложности в крохотной дрожжевой клетке находится свыше 40 миллионов таких молекул — в малюсенькой клетке белков вдвое больше, чем людей в громадном мегаполисе вроде Пекина!

Результатом такого белкового многообразия становится водоворот химических реакций, непрерывно происходящих в каждой клетке. Если вообразить, что вы получили шанс проникнуть в живую клетку и увидеть, что творится в мире молекул, ваш рассудок может помрачиться из-за всей этой бурлящей каши химических процессов.

Некоторые из участвующих молекул имеют электрический заряд и поэтому могут притягиваться или отталкиваться, другие же пассивно нейтральны. Некоторые представляют собой кислоты или щелочи типа отбеливателей. Все эти разнообразные вещества находятся в постоянном взаимодействии, их столкновения случайны или запланированы.

Иногда молекулы встречаются на краткое время для осуществления химической реакции, быстро обменявшись электронами или протонами. В других случаях между молекулами образуются сильные и прочные химические связи. В целом в клетке происходят многие тысячи разных химических реакций, которые постоянно усердно трудятся над поддержанием жизни.

В сравнении с этим число химических реакций даже на крупнейших промышленных химкомбинатах выглядит крайне бледно. Например, на заводе по производству пластмасс задействовано несколько десятков химических реакций.

Читайте также:  Достижения селекции, Биология

Вся эта кипучая и быстрая деятельность происходит на конце временнóго диапазона, противоположном глубокому времени, потребовавшемуся для развития данных систем. Но головокружительный временной масштаб клеточного мира столь же трудно постигаем нашим рассудком, как и эволюционное время.

Некоторые управляющие этими реакциями клеточные ферменты действуют с поразительной скоростью, проводя тысячи, даже миллионы химических реакций в секунду. Они не только фантастически быстры, но и способны быть чрезвычайно точными. Ферменты могут манипулировать отдельными атомами с такой точностью и надежностью, о которых химики-технологи могут только мечтать.

Но эволюция совершенствовала эти процессы миллиарды лет — чуть подольше нас с вами!

Совместное выполнение всей этой работы — величайшее достижение. Хотя может казаться, что гигантское число одновременных химических реакций в клетках происходит хаотически, но на деле оно очень упорядоченно. Для правильного срабатывания каждой реакции требуются свои особые химические условия.

Некоторым нужна более кислая или более щелочная среда; другим требуются специальные химические ионы типа кальция, магния, железа или натрия; еще одним — наличие воды или же вода, напротив, их замедляет. И все же все эти процессы должны происходить одновременно и в тесной близости, в узких пределах клетки.

Это становится возможным лишь благодаря тому, что не каждому из различных ферментов требуются свои экстремальные значения температуры, давления либо кислые или щелочные условия, присущие промышленным химкомбинатам. В противном случае они не могли бы сосуществовать в такой тесноте. Тем не менее многие из этих метаболических реакций должны проводиться раздельно.

Они не должны мешать друг другу, а их конкретные химические требования должны соблюдаться. Ответом на этот запрос становится деление на зоны.

Деление на зоны — способ функционирования любых сложных систем. Возьмем города. Они эффективно функционируют, только если состоят из различных зон с особыми функциями: вокзалы, школы, больницы, заводы, полицейские участки, электростанции, очистные сооружения и т. д.

Все эти и многие иные участки необходимы для того, чтобы город оставался единым целым; все бы тут же разладилось, если бы они смешались. Они должны быть отделены друг от друга, чтобы действовать эффективно, но при этом быть относительно близкими и взаимосвязанными.

То же самое относится к клеткам, которым нужно создать свою индивидуальную группу микросред, отделенных друг от друга в физическом или временном отношении, но при этом взаимодействующих.

У живых существ это достигается путем создания систем контактирующих между собой зон, имеющих разные размеры: от очень больших до чрезвычайно маленьких.

Самые большие, возможно, будут самыми известными: различные ткани и органы многоклеточных организмов типа растений и животных — как вы и я. Это определенные зоны, каждая из которых приспособлена для конкретных химических и физических процессов.

Ваш желудок и кишечник усваивают химические вещества из пищи; печень устраняет токсическое действие химических веществ и лекарств; сердце пользуется химической энергией для перекачки крови и т. п.

Все функции этих органов обусловлены специализированными клетками и тканями, из которых они сделаны: клетки в слизистой оболочке желудка выделяют кислоту, а в сердечных мышцах сокращаются. В свою очередь, все эти клетки так же представляют собой самостоятельные зоны.

По сути, клетка служит основополагающим примером пространственного разделения жизни. Главная роль наружной мембраны клетки заключается в сохранении обособленности содержимого клетки от остального мира.

Благодаря изолирующему эффекту этой мембраны клетки могут способствовать поддержанию физического и химического порядка. Разумеется, клетки сохраняют такое состояние только на время.

Когда они прекращают трудиться, то погибают, и воцаряется хаос.

Подробнее читайте:
Нёрс, П. Что такое жизнь? Понять биологию за пять простых шагов / Пол Нёрс ; [пер. с англ. А. Б. Попова]. — М. : КоЛибри, Азбука-Аттикус, 2021. — 224 с.

Жизнь это… – успехи современного естествознания (научный журнал)

1
«Что такое жизнь?» Этот вопрос занимает человечество с древнейших времён. Многие философы и естествоиспытатели пытались и пытаются разрешить этот вопрос, определить жизнь как явление. Существует множество определений жизни, но, несмотря на это, среди них нет ни одного, который бы наиболее полно отразил основной принцип существования жизни, её сущность.

В предлагаемой вашему вниманию статье сделана ещё одна попытка объяснения феномена жизни. Её основная идея: Жизнь – это самовоспроизводящийся катализатор диссипации энергии. Что касается самовоспроизведения, то здесь всё более или менее понятно, а вот словосочетание «катализатор диссипации» требует некоторых разъяснений. Диссипация – термин, обозначающий рассеяние энергии, т.е.

её переход с потенциально более высокого уровня на более низкий – тепловой уровень.

В свете рассматриваемого определения жизни подразумевается, что энергия квантов солнечного света, которые могут странствовать в космосе «бесконечно», будучи поглощенной растениями поэтапно диссипатируется, в процессах жизнедеятельности и формирования собственных структур последовательными участниками пищевой цепи (растение – травоядное – хищник – падальщики), в тепловое излучение.

Таким образом, живое вещество, многократно ускоряя процесс диссипации энергии солнечных квантов в тепловое излучение, играет в нем роль специфического катализатора. Далее рассматривается ряд важных следствий, вытекающих из данного определения.

В настоящее время вопрос, “Что такое жизнь?”, воспринимается большинством людей как риторический, не допускающий в принципе строгого научного определения. Такой взгляд вполне закономерен, так как за все время существования человечества на него было дано столько ответов, высказано столько мнений, что сказать что-либо принципиально новое, кажется невозможно.

Вот лишь несколько примеров определения этого понятия. “Жизнь-это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой” [8]. Некоторые считают, что это определение следует дополнить: “Жизнь- это активное, идущее с затратой энергии, поддержание и воспроизведение специфической структуры” [6].

Шредингер говорит о жизни, как закономерном поведении материи, поддерживающем свою упорядоченность за счет извлечения отрицательной энтропии из пищи и солнечного света [7].

Вилли и Детье в своем фундаментальном труде “Биология”, затрудняясь дать “простое определение жизни”, лишь перечисляют ее “характерные черты – рост, движение, обмен веществ и приспособление”[3]; к чему, в конечном счете, сводится большинство других определений. Однако во всех этих определениях нет самого главного – раскрытия самой сущности жизни, ее роли в природе. Как в свое время посетовал Бор, жизнь есть “основной постулат биологии, не поддающийся дальнейшему анализу” [2]. В данной работе предлагается определение жизни, несколько иначе раскрывающее сущность этого феномена, а также ряд важных следствий, вытекающих из данного определения.

Жизнь – это самовоспроизводящийся катализатор диссипации энергии

Если с самовоспроизведением в этом определении все более-менее ясно, т.к. из школьного курса и повседневной жизни всем известно, что живые организмы способны к воспроизведению себе подобных. Словосочетание катализатор диссипации требует некоторых пояснений. Диссипация – термин, обозначающий рассеяние энергии, т.е.

ее переход с потенциально более высокого уровня на более низкий или тепловой уровень.

Например, “горячие фотоны большого взрыва”, обладающие высокой потенциальной энергией, блуждая в космосе, постепенно рассеяли свою энергию и к настоящему времени остыли до уровня “реликтового излучения”, имеющего минимальный уровень энергии.

Если этим космическим скитальцам потребовались для этого миллиарды лет, то участь фотонов, испущенных нашим солнцем, складывается по-разному. Подавляющее большинство их, подобно фотонам “большого взрыва” на долгие годы отправляется странствовать в космос.

Часть фотонов, попавших на Землю, встретившись на своем пути с представителем живого царства – зеленым листом, будут моментально поглощены им. Энергия фотонов при этом разделяется на две части.

Первая часть, пошедшая на ассимиляцию природных компонентов (воды, двуокиси углерода, минеральных веществ) и построение структур листа и растения в целом, как бы консервируется в них в виде энергии химических связей.

Вторая же часть, являющаяся своеобразным термодинамическим налогом, рассеивается в виде теплового излучения.

В дальнейшем, в организме травоядного животного, эти структурно-энергетические консервы растения преобразуются, с обязательным рассеянием соответствующей порции тепла, в его собственные структуры и макроэргические соединения.

Распад последних, обеспечивая все процессы жизнедеятельности животного, также сопровождается диссипацией энергии. В свою очередь, богатые потенциальной энергией структуры травоядного, будут переработаны каким-либо хищником в собственные структуры, опять же с обязательным выделением тепла. Погибший хищник будет съеден падальщиками и т.д. Каждый этап этого бесконечного конвейера жизни сопровождается выделением тепла и, в конце концов, вся лучистая энергия, первоначально усвоенная растениями в процессе фотосинтеза, превращается в тепловое излучение, рассеивающееся в окружающем пространстве.

Читайте также:  Бактерии, Биология

Теперь обратимся к понятию катализатор. Классическое определение этого понятия, данное Берце-лиусом и приведенное во многих источниках, гласит: катализатором называется вещество, ускоряющее реакцию, но остающееся неизменным в конце данной реакции.

Поэтому если рассматривать диссипацию как некую реакцию, исходным продуктом которой является энергия потенциально высокого уровня (солнечные фотоны), а конечным – энергия более низкого уровня (тепловое излучение), то жизнь в целом играет в этой реакции роль специфического катализатора. Она, многократно ускоряя ход данной реакции, сама при этом остается, на первый взгляд, неизменной. Здесь имеется в виду, что отдельные этапы процесса диссипации энергии гораздо короче процессов онтогенеза и эволюции в целом. Кстати и для катализатора понятие неизменности также имеет относительный характер.

Теперь, когда все понятия, входящие в определение жизни, как катализатора диссипации энергии, изложены, посмотрим, что же это нам дает нового в понимании этого явления природы – жизни.

Смысл жизни, в свете рассматриваемого определения, состоит в диссипации энергии, и везде где появляется энергия в любой доступной форме, тут же вокруг нее происходит активация процессов жизнедеятельности. Например, около погибшего животного сразу начинается хоровод падальщиков: грифы, гиены, шакалы и им подобные.

После этого к пиршеству приступают насекомые и бактерии. По мере того как уменьшается количество энергетических консервов, кипение жизни на этом участке постепенно замирает, и через некоторое время остается энергетически пустой, практически полностью минерализованный скелет.

Поэтому известное высказывание Сократа: “Я ем, чтобы жить, а многие живут, чтобы есть”,- следует признать чисто субъективным, поскольку, исходя из вышеизложенного, объективно все живое существует, чтобы есть и, таким образом, вносить свой вклад в процесс диссипации энергии.

Опираясь на это определения жизни, также логично выводятся критерий прогресса и причины прогрессивной эволюции. Эти понятия, широко используемые в обыденной жизни, при попытке дать им количественную характеристику вызывает существенное затруднение.

Еще более ста лет назад Дарвин сказал: “Естественный отбор, или переживание наиболее приспособленного, не предполагает необходимого прогрессивного развития” [4]. С тех пор явление прогрессивной эволюции рассматривается не как строгий закон, а как некая тенденция.

Исходя же из положения, что основной функцией жизни является диссипация энергии, естественно следует вывод, о закономерном характере направленности вектора эволюции в сторону максимально возможной, в данных условиях, скорости диссипации энергии. Это полностью соответствует положению, высказанному Э.Бауэром еще в 1935 г.

[1] о том, что при прочих равных условиях в ходе эволюционного процесса преимущества получают организмы с такой структурой, которая обеспечивает выполнение большей работы. При этом имеется в виду работа, направленная на поддержание “термодинамического неравновесия” между организмом и окружающей средой.

Чтобы пояснить положение о корреляции прогрессивности организмов со скоростью диссипации энергии и “термодинамическим неравновесием” Бауэра; рассмотрим эволюционный ряд: простейшие – рыбы -земноводные – рептилии – млекопитающие. Наиболее очевидный критерий, определяющий этот порядок, является рост температуры тела.

Если у простейших она практически равна температуре окружающей среды, то на следующих ступенях эволюции от рыб к рептилиям идет постепенный рост температуры тела, одновременно снижается ее зависимость от окружающей среды. У млекопитающих же температура тела практически постоянна и равна примерно 37-40оС.

Рост температуры тела в соответствии с законами термодинамики обусловливает и большую скорость диссипации энергии. Для наглядности – небольшой пример: теплокровному млекопитающему – льву, по сравнению с пресмыкающимся – крокодилом, при равном весе, требуется в 25-30 раз больше пищи [10], т.е.

уровень основного обмена и скорость диссипации у него во столько же раз быстрее.

Против параллелизма прогресса и роста температуры возможно следующее возражение. Предположим, что существует некое гипотетическое животное, тождественное тому же льву, но отличное от него большими затратами энергии в единицу времени и, следовательно, являющееся формально более прогрессивным.

Однако такому “прогрессивному” животному для поддержания своего “status quo” требуется больше пищи, а каких-либо преимуществ оно, по определению тождественности не имеет, то прокормиться и оставить потомство в конкурентной борьбе со своим аналогом ему будет крайне трудно, и оно должно будет исчезнуть в результате естественного отбора.

Таким образом, формально более прогрессивное животное уступает в конкурентной борьбе менее прогрессивному, т.е. потенциал выживания более экономичного с энергетических понятий животного выше.

Это противоречие между генеральным вектором эволюции, идущей по пути увеличения диссипации энергии, и отдельным индивидом, стремящимся, свести собственные энергетические затраты к минимуму, является классическим проявлением закона диалектики: “единства и борьбы противоположностей”.

Дело в том, что преимущество в борьбе за существование дает не рост температуры сам по себе, а пропорциональный ей рост скорости протекания химических реакций внутри организма, обеспечивающий большую подвижность физиологических процессов.

Из вышеизложенного очевидно, что критерием прогресса является скорость диссипации энергии или уровень основного обмена. Механизм же осуществляющий прогрессивную направленность эволюционного развития живой природы, по-видимому, следующий.

Мутационный процесс, поставляющий материал для естественного отбора, дает “прогрессивные и регрессивные” отклонения с примерно равной вероятностью. Особи с регрессивными отклонениями, т.е.

с меньшей подвижностью физиологических процессов и соответственно меньшим уровнем основного обмена в условиях жесточайшей конкуренции имеют мало шансов выжить и оставить потомство.

И лишь немногие из них, нашедшие небольшие, мало освоенные экологические ниши, могут сформировать новый, как правило, немногочисленный вид.

Более прогрессивные особи – с большей динамичностью физиологических процессов, наоборот, получив значительное преимущество в борьбе за существование, легко могут выжить и сформировать новый процветающий вид, потеснив конкурентные виды в существующих экологических нишах, или даже занять новые, как, например, птицы освоили небо. При этом появление любого вида флоры или фауны как прогрессивного так и регрессивного безусловно увеличивают общую скорость диссипации энергии на планете.

Эволюционный рост уровня организации живого и соответствующее увеличение скорости диссипации энергии, не может продолжаться бесконечно. Органическая эволюция подошла к своему температурному пределу 37-40оС.

Дальнейший рост диссипации энергии невозможен, так как у вида со средней температурой 40-41оС любые стрессовые ситуации, вызывая подъем температуры на 2-3оС, приводили бы к превышению порога температурной стабильности белка 42-43оС и неизбежной гибели организма.

Некоторый диссонанс в это положение вносит небольшая реликтовая группа термофильных бактерий, обитающая при температурах порядка 70-100оC.

Однако эти бактерии, имеющие адаптированные к данным условиям структуры, так и не смогли стать родоначальником неких высокотемпературных организмов, поскольку сами находятся на грани существования водных растворов (около 100оС), которыми, по сути, являются все живые организмы. Кроме того, поскольку температура этих бактерий практически равна температуре окружающей среды, скорость диссипации энергии у них примерно такая же, как у обычных бактерий.

На современном этапе развития на первое место выходит комплекс – человек плюс созданные им структуры, которые, согласно концепции “расширенного фенотипа” [9], могут рассматриваться как составная часть данной живой системы.

Эти структуры работают при температурах в сотни и тысячи градусов и обеспечивают, таким образом, колоссальный рост диссипации энергии. Скорость передачи информации в них достигает 300 тысяч км/с, что в миллионы раз больше скорости проведения нервных импульсов у животных, находящихся на высшей ступени органической эволюции.

Эти структуры, определяемые как техногенногенные; структуры, которые и живыми трудно назвать, являются, однако, такими же неотъемлемыми элементами жизни как белки и нуклеиновые кислоты, и с появлением которых началась принципиально новая ступень эволюции жизни на земле.

Если, опираясь на это положение, провести экстраполяцию в будущее, то можно сделать еще один вывод – человечество породило техногенную эволюцию, но она не останется вечно послушным ребенком, находящимся под опекой своих родителей.

БИБЛИОГРАФИЧЕСКИй СПИСОК

  1. Бауэр Э.С. Теоретическая биология.- СПб.: Росток, 2002. -350 с.
  2. Бор Н. Атомная физика и человеческое познание.-М.: Иностранная литература, 1961. -151 с.
  3. Вилли К., Детье В. Биология. -М.: Мир, 1974. -824 с
  4. Дарвин Ч. Происхождение видов путем естественного отбора. -СПб.: Наука, 1991.-539 с.
  5. Коштоянц Х.С. Основы сравнительной физиологии. М.: АН СССР, 1957. -т.2, -635 с.
  6. Медников Б.М. Аксиомы биологии. – М.: Знание, 1982. -136 с.
  7. Шредингер Э. Что такое жизнь с точки зрения физика. М.: Атомиздат, 1972. -88 с.
  8. Энгельс Ф. Диалектика природы. Л.: Государственное издательство политической литературы,1952.-328 с.
  9. Dawkins r. the Extended Phenotype. Oxford W.H.Freeman, 1982. -307 с
  10. Hemmingsen A.M. Metabolism in relation to body size. // nordisk.: rep. Steno Mem. Hosp., Insulin Lab., 1960.-№-9, 110 с.

Библиографическая ссылка

Модин А.П. ЖИЗНЬ ЭТО… // Успехи современного естествознания. – 2009. – № 3. – С. 10-13;
URL: https://natural-sciences.ru/ru/article/view?id=13463 (дата обращения: 04.11.2021).

Читайте также:  Генетика человека как наука - биология

Что такое жизнь с точки зрения биологии: определение понятия

«Жизнь есть способ существования белковых тел» — это строчка из классического определения жизни немецкого философа Ф. Энгельса в книге «Анти-Дюринг». Все развитие биологии за последние 100-150 лет подтверждает неразрывную связь жизнедеятельности организмов с белками.

Классическое определение «Жизнь — это способ существования белковых тел» нуждается в дополнении «…и нуклеиновых кислот». После создания электронного микроскопа появилась возможность досконально изучить строение и функции клеток, химических веществ в их составе.

Если предлагается задание «Вспомните полное определение понятия «жизнь», то недостаточно воспроизвести короткую фразу о существовании белковых тел. Понятие «жизнь» многогранно, включает в себя и способ бытия сущностей (живых организмов), и особую форму движения материи. Что такое жизнь или живое существо — в современной биологии чаще всего определяется через набор специфичных процессов.

Важные признаки отличия живого от неживого:

  • сходство химического состава;
  • сходная структурная организация;
  • обмен веществ и энергии;
  • открытость;
  • саморегуляция;
  • раздражимость;
  • самовоспроизведение;
  • наследственность;
  • изменчивость;
  • развитие и рост.

Субстрат жизни — это белки. Нуклеиновые кислоты отвечают за синтез белковых молекул, хранение и передачу наследственной информации. Клетки, состоящие из биополимеров, способны к самовоспроизведению благодаря удвоению молекул ДНК.

Многообразие жизни: основные термины и понятия

Формулируя определение, что такое жизнь с точки зрения биологии, надо раскрыть суть понятия «организм — открытая система». Биологические системы открыты, так как они являются устойчивыми лишь при непрерывном взаимодействии с окружающей средой. Самая простая открытая система, отвечающая всем перечисленным требованиям, — это клетка, одноклеточный организм.

Упорядоченная иерархичная система живого включает в себя следующие уровни:

  • молекулярный;
  • клеточный;
  • организменный;
  • популяционно-видовой;
  • экосистемный;
  • биосферный.

Обменные процессы между организмами и окружающей средой — необходимое условие существования. Если прекращается обмен, то прекращается и жизнь. Организмы устойчивы, они сохраняют уникальные свойства в постоянно меняющихся условиях среды обитания.

Почему трудно дать однозначное определение понятия «жизнь»?

Есть комплекс отличительных признаков живого от неживого, в частности, наличие биополимеров. Однако белки и нуклеиновые кислоты встречаются и вне живых организмов. Вот почему очень сложно дать определение понятию «жизнь», используя только одну фразу: «Жизнь — это форма существования белковых тел».

Вирусы — кристаллоподобные частицы, построенные из молекул РНК или ДНК, белков. Вирусные частицы вне клеток организма-хозяина не проявляют признаки живого, не размножаются.

Поэтому одни исследователи считают, что вирусы — особая форма жизни; другие полагают, что это неживые объекты, состоящие из органических молекул. Имеется генетический материал, способность создавать себе подобные частицы.

Однако нет клеточного строения и собственного обмена веществ.

По сей день феномен жизни остается сложным и трудным для понимания, особенно для учеников средних классов, изучающих предмет «Биология». Существует множество различных попыток приблизиться к определению жизни, которое было бы общим для всех наук.

Исчерпывающего определения исследователи пока не нашли. Разработаны критерии для сравнения объектов живой и неживой природы.

Типичные характеристики жизни: единство структурной организации, открытость, обмен веществ и энергии, самовоспроизведение, развитие и рост, раздражимость.

_________________________________

Смотри также: Основные этапы развития жизни на Земле: таблица хронологии

3. Развитие понятия жизни на современном этапе. Определения понятия «Жизнь». Фундаментальные свойства живого

Довольно
трудно дать полное и однозначное
определение понятию жизни, учитывая
огромное разнообразие ее проявлений.
В большинстве определений понятия
жизни, которые давались многими учеными
и мыслителями на протяжении веков,
учитывались ведущие качества, отличающие
живое от неживого. Например, Аристотель
говорил, что жизнь – это «питание, рост
и одряхление» организма; А. Л.

Лавуазье
определял жизнь как «химическую функцию»;
Г. Р. Тревиранус считал, что жизнь есть
«стойкое единообразие процессов при
различии внешних влияний». Понятно, что
такие определения не могли удовлетворить
ученых, так как не отражали (и не могли
отражать) всех свойств живой материи.

Кроме того, наблюдения свидетельствуют,
что свойства живого не исключительны
и уникальны, как это казалось раньше,
они по отдельности обнаруживаются и
среди неживых объектов. А. И. Опарин
определял жизнь как «особую, очень
сложную форму движения материи». Это
определение отражает качественное
своеобразие жизни, которое нельзя свести
к простым химическим или физическим
закономерностям.

Однако и в этом случае
определение носит общий характер и не
раскрывает конкретного своеобразия
этого движения.

Ф.
Энгельс в «Диалектике природы» писал:
«Жизнь есть способ существования
белковых тел, существенным моментом
которого является обмен веществом и
энергией с окружающей средой».

Для
практического применения полезны те
определения, в которых заложены основные
свойства, в обязательном порядке присущие
всем живым формам.

Вот одно из них: жизнь
– это макромолекулярная открытая
система, которой свойственны иерархическая
организация, способность к
самовоспроизведению, самосохранению
и саморегуляции, обмен веществ, тонко
регулируемый поток энергии.

Согласно
данному определению жизнь представляет
собой ядро упорядоченности,
распространяющееся в менее упорядоченной
Вселенной.

Жизнь
существует в форме открытых систем. Это
означает, что любая живая форма не
замкнута только на себе, но постоянно
обменивается с окружающей средой
веществом, энергией и информацией.

  • Существует
    много определений жизни
    ,
    поскольку изменялись представления о
    ней, совершенствовалась научная картина
    мира и ее философское осмысление.
  • По
    Озангеру и
    Моровицу 
    «Жизнь есть свойство материи, приводящее
    к сопряженной циркуляции биоэлементов
    в водной среде, движимая, в конечном
    счете, энергией солнечного излучения
    по пути увеличения сложности»
  • 1878
    г.
    Фридрих
    Энгельс
     «Диалектика
    природы»
    :
    «Жизнь
    есть способ существования белковых
    тел, существенным моментом которого
    является постоянный обмен
    веществ с окружающей их внешней природой,
    причем с прекращением этого обмена
    веществ прекращается и жизнь, что
    приводит к разложению белка»
  • Свойства
    живого:
  1. Самообновление, которое связано с постоянным обменом веществ и энергии, и в основе которого лежит особенность хранить и использовать биологическую информацию в виде уникальных информационных молекул: белков и нуклеиновых кислот.

  2. самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем.

  3. саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;

  4. раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель.

  5. поддержание гомеостаза — относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

  6. структурная организация — определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой — биогеоценозов;

  7. адаптация— способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

  8. репродукция (воспроизведение).

    Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем.

    На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

  9. наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

  10. изменчивость — свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные.

    В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства.

    Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

  11. индивидуальное развитие (процесс онтогенеза) — воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма.

    В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров.

    Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

  12. филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.

  13. дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей.

    Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна.

    Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]