Терморегуляция при разных условиях среды – биология

Николай Агаджанян – Нормальная физиология

Температура окружающей среды оказывает большое влияние на физиологическую активность живых организмов. В разных регионах Земли температура колеблется от -50″ во время арктической зимы до +60°С летом в некоторых пустынях.

Температурный диапазон, в котором способны функционировать живые клетки, составляет около 50°. Живые клетки замерзают при нескольких градусах ниже 0°С. Кристаллы льда, которые образуются при замерзании тканей, разрушают клеточные структуры.

Однако некоторые животные способны восстанавливать свою жизнедеятельность после размораживания. При температурах выше 45°С происходит денатурация белков, т. е. в этих условиях функционирование организма невозможно.

Температура способна влиять на метаболизм живой ткани, так как скорость биохимических реакций зависит от температуры. Зависимость скорости химической реакции от температуры описывается уравнением Аррениуса.

При изучении влияния температуры на скорость реакции можно путем сравнения этой скорости при двух разных температурах определить температурный коэффициент.

Разница температур, равная 10°С, стала стандартным диапазоном, по которому определяют температурную чувствительность биологических систем. В этом случае температурный коэффициент, обозначаемый О10. рассчитывают из уравнения Вант-Гоффа.

Согласно правилу Вант-Гоффа скорость химических реакций возрастает при повышении температуры на 10°С примерно в 2–3 раза.

В животном мире существует несколько основных способов реагирования на внешнюю температуру.

У пойкилотермных (холоднокровных) животных, к которым относятся большинство беспозвоночных и низших позвоночных, температура тела зависит от температуры окружающей среды.

Интенсивность энергетических процессов и уровень активности пойкилотермных организмов определяются температурой внешней среды (рис. 27).

У пойкилотермиых животных температура тела близка к температуре воздуха. Гомойотермные сохраняют температуру тела на сравнительно постоянном уровне в широком диапазоне температур воздуха

В процессе эволюции у млекопитающих и птиц выработалась способность сохранять одинаковую температуру внутренних частей тела, несмотря на ее изменения в окружающей среде (терморегуляция), что обеспечивает относительное постоянство метаболических процессов и делает организм менее зависимым от внешних изменений.

Такие организмы называются гомойотермными (теплокровными), их отличают от пойкилотермиых организмов, близких по массе, значительно более высокий уровень энергетического обмена и относительно независимый от температуры окружающей среды уровень активности.

Интенсивность обмена энергии на единицу массы тела у гомойотермных животных даже после разрушения центров терморегуляции как минимум в 3 раза превышает интенсивность обмена у пойкилотермиых (при одинаковой температуре).

Поскольку гомойотермные организмы могут поддерживать постоянную температуру, а следовательно, постоянный уровень активности независимо от окружающей температуры, они имеют превосходство над пойкилотермными животными. Вместе с тем, пойкилотермия дает преимущество в том случае, когда пищевые ресурсы ограничены или подвержены сезонным изменениям.

Есть животные, которые обладают способностью переходить на некоторое время из гомойотермного состояния в пойкилотермное и наоборот. Такой переход наблюдается у животных, впадающих в зимнюю спячку (сурки, суслики, сони и др.), отчего они получили название гетеротермных.

Гетеротермия – это особое состояние, при котором гомойотермные животные на время выключают терморегуляцию и температура их тела снижается до пределов, отличных приблизительно на ГС от окружающей среды.

Гетеротермия является свойством, приобретенным в процессе эволюции позже, чем гомойотермия, и имеет важное значение для приспособления организма к неблагоприятным условиям (например, к недостатку пищи, воды).

Животных можно также классифицировать по тем источникам тепла, которые они используют для поддержания температуры тела. Эктотермные, например рептилии, используют для этого наружное тепло; эндотермные, и в частности человек, используют тепло метаболического происхождения.

Возможность процессов жизнедеятельности ограничена узким пределом температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25° и ее увеличение выше 43°, как правило, смертельно, особенно чувствительны к изменениям температуры нервные клетки.

Температура тела зависит от двух факторов: интенсивности образования тепла (теплопродукции) и величины потерь тепла (теплоотдачи).

Главным условием поддержания постоянной тем-пературы тела гомойотермных животных, в том числе и человека, является достижение устойчивого баланса теплопродукции и теп-лоотдачи.

Такой баланс описывается уравнением M±EH±Et±EK-EK±S=О, где М – метаболическая теплопродукция; Ея – излучение; ЕТ – теплопроведение; Ек – конвекция; Ет – испарение; S – накопление тепла; плюс означает приток, минус – теплоотдачу.

Тепло может быть получено или отдано путем излучения, теплопроведения и конвекции в зависимости от условий внешней среды.

Тепло всегда образуется в качестве побочного продукта биохимических реакций, протекающих в организме, поэтому метаболизм всегда имеет положительный знак, а испарение – отрицательный.

Противоположная реакция – конденсация практически не влияет на тепловой баланс у человека.

Вся высвобождающаяся в организме при биологическом окислении питательных веществ энергия в конечном счете превращается в тепло. Чем интенсивнее протекание обменных процессов, тем больше теплообразование в организме. Скорость биологического окисления возрастает при увеличении температуры.

Взаимозависимость обменных процессов и теплообразования не приводит к самоускорению величины обмена и температуры, так как прирост температуры тела сопровождается увеличением отдачи тепла. Оптимальное соотношение теплопродукции и теплоотдачи обеспечивается совокупностью физиологических процессов, называемых терморегуляцией.

Различают химическую и физическую терморегуляцию.

Этот вид регуляции температуры осуществляется за счет изменения уровня обмена веществ, что ведет к повышению или понижению образования тепла в организме.

Суммарная теплопродукция в организме складывается из первичной теплоты, выделяющейся в ходе постоянно протекающих во всех тканях реакций обмена веществ, и вторичной теплоты, образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы.

Интенсивность метаболических процессов неодинакова в различных органах и тканях, поэтому их вклад в общую теплопродукцию неравнозначен. Наибольшее количество тепла образуется в мышцах при их напряжении и сокращении.

Образование тепла в мышцах при этих условиях получило название сократительного термогенеза. Сократительный термогенез является основным механизмом дополнительного теплообразования у взрослого человека.

У новорожденных, а также у мелких млекопитающих имеется механизм ускоренного теплообразования за счет возрастания скорости окисления жирных кислот бурого жира, который расположен в межлопаточной области, вдоль крупных сосудов грудной и брюшной полостей, в затылочной области шеи.

Такой оттенок ей придают многочисленные, в сравнении с белой жировой тканью, окончания симпатических нервных волокон и митохондрии, содержащиеся в клетках этой ткани. Масса бурой жировой ткани достигает у взрослого 0,1% массы тела. У детей содержание бурого жира больше, чем у взрослых.

В митохондриях жировых клеток имеется полипептид, способный разобщать идущие здесь процессы окисления и образования АТФ. Результатом этого является образование в этой ткани значительно большего количества тепла, чем в белой жировой ткани.

Этот механизм получил название несократительного термогенеза.

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. При повышении температуры окружающей среды теплоотдача увеличивается, а при понижении – уменьшается. Различают следующие механизмы отдачи тепла в окружающую среду: излучение, теплопроведение, конвекцию и испарение.

Излучение – это отдача тепла в виде электромагнитных волн инфракрасного диапазона (а = 5 – 20 мкм). Все предметы с температурой выше абсолютного нуля (-273°С) отдают энергию путем излучения.

Электромагнитная радиация свободно проходит через вакуум, атмосферный воздух также можно считать прозрачным для электромагнитных волн.

Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности изучения (площадь поверхности тех частей тела, которые соприкасаются с воздухом) и разности средних значений температур кожи и окружающей среды.

При температуре окружающей среды 20°С и относительной влажности воздуха 40 – 60% организм взрослого человека рассеивает путем излучения около 40 – 50% всего отдаваемого тепла.

Излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если температуры поверхности кожи и окружающей среды выравниваются, отдача тепла излучением прекращается.

Если температура окружающей среды превышает температуру кожи, тело человека согревается, поглощая инфракрасные лучи, выделяемые средой.

Теплопроведение (кондукция) – отдача тепла при непосредственном соприкосновении тела с другими физическими объектами.

Источник: https://profilib.org/chtenie/95681/nikolay-agadzhanyan-normalnaya-fiziologiya-75.php

Терморегуляция при мышечной работе (стр. 1 из 4)

Температура оказывает существенное влияние на протекание жизненных процессов в организме и на его физиологическую активность. Физико-химической основой этого влияния является изменение скорости протекания химических реакций, благодаря которым происходит энтропическое превращение всех видов энергии в тепловую.

Зависимость скорости химических реакций количественно выражается законом Вант-Гоффа – Аррениуса, согласно которому при изменении температуры окружающей среды на 10°с происходит, соответственно, повышение или понижение скорости химических процессов в 2–3 раза. Разница в 10°с стала стандартным диапазоном, по которому определяют температурную чувствительность биологических систем.

В соответствии с одним из следствий второго закона термодинамики, теплота как конечное превращение энергии способна переходить только из области более высокой температуры в область более низкой. Поэтому поток тепловой энергии от живого организма в окружающую среду не прекращается до тех пор, пока температура тела особи выше, чем температура среды.

Температура тела определяется соотношением скорости метаболической теплопродукции клеточных структур и скорости рассеивания образующейся тепловой энергии в окружающую среду. Следовательно, теплообмен между организмом и средой является неотъемлемым условием существования теплокровных организмов.

Нарушение соотношения этих процессов приводит к изменению температуры тела.

Человек издревле обитает в различных условиях нашей планеты, температурные различия между которыми превышают 100°с. Ежегодные и ежесуточные колебания могут быть очень велики.

Следовательно, проблема защиты от внешних температурных воздействий и физиологической адаптации к ним всегда стояла перед человеком, а при выполнении мышечной работы в некоторых условиях внешней среды терморегуляция является одним из важных лимитирующих факторов.

Читайте также:  Выводы "внутренняя среда человека" - биология

При анализе температурного режима человеческого организма на протяжении долгого времени понятие о температуре тела как одной из важнейших физиологических констант при нормальном состоянии организма распространялось не только на состояние покоя, но и на активную мышечную деятельность. С этой позиции различная степень гипертермии при мышечной работе не могла расцениваться иначе, как показатель срыва или функциональной недостаточности терморегуляционной системы, в частности, аппарата физической терморегуляции.

Современный взгляд на терморегуляцию человека в процессе работы существенно изменился. Допускается и доказана прямая, хотя и не линейная зависимость, взаимосвязь между температурой ядра и уровнем метаболизма.

Важно подчеркнуть, что степень повышения температуры ядра при работе в большей степени коррелирует с общим уровнем энергозатрат, чем с величиной теплопродукции.

Поэтому знание физиологических основ терморегуляции человека в различных условиях деятельности, особенно при физических нагрузках, является необходимым.

Температура тела человека. Тепловой баланс

Возможность процессов жизнедеятельности ограничена узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°с и её увеличение выше 43°с, как правило, смертельно.

Особенно чувствительны к изменениям температуры нервные клетки. С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешнего, оболочки, и внутреннего, ядра.

Ядро – это часть тела, которая имеет постоянную температуру, а оболочка – часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой. Температура разных участков ядра различна. Например, в печени – 37.8–38.

0°с, в мозге – 36.9–37.8°. в целом же, температура ядра тела человека составляет 37.0°с.

Температура кожи человека на различных участках колеблется от 24.4 до 34.4°с. Самая низкая температура наблюдается на пальцах ног, самая низкая – в подмышечной впадине.

Именно на основании измерения температуры в подмышечной впадине обычно судят о температуре тела в данный момент времени.

По усреднённым данным, средняя температура кожи обнажённого человека в условиях комфортной температуры воздуха составляет 33–34°с.

Существуют циркадные – околосуточные – колебания температуры тела. Амплитуда колебаний может достигать 1°. Температура тела минимальна в предутренние часы (3–4 часа) и максимальна в дневное время (16–18 часов). Эти сдвиги вызваны колебаниями уровня регулирования, т.е. связаны с изменениями в деятельности ЦНС.

В условиях перемещения, связанного с пересечением часовых меридианов, требуется 1–2 недели для того, чтобы температурный ритм пришёл в соответствие с новым местным временем. На суточный ритм могут накладываться ритмы с более длительными периодами.

Наиболее отчётливо проявляется температурный ритм, синхронизированный с менструальным циклом.

Известно также явление асимметрии аксилярной температуры. Она наблюдается примерно в 54% случаев, причем температура в левой подмышечной впадине несколько выше, чем в правой. Возможна асимметрия и на других участках кожи, а выраженность асимметрии более чем в 0,5° свидетельствует о патологии.

Постоянство температуры тела у человека может сохраняться лишь при равенстве процессов теплообразования и теплоотдачи всего организма. В термонейтральной (комфортной) зоне существует баланс между теплопродукцией и теплоотдачей. Ведущим фактором, определяющим уровень теплового баланса, является температура окружающей среды.

При её отклонении от комфортной зоны в организме устанавливается новый уровень теплового баланса, обеспечивающий изотермию в новых условиях среды. Оптимальное соотношение теплопродукции и теплоотдачи обеспечивается совокупностью физиологических процессов, называемых терморегуляцией.

Различают физическую (теплоотдача) и химическую (теплообразование) терморегуляцию.

Механизмы теплообразования и теплоотдачи (химическая и физическая терморегуляция)

Химическая терморегуляция – теплообразование – осуществляется за счёт изменения уровня обмена веществ, что приводит к изменению образования тепла в организме. Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ.

При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота – 65–70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота).

Таким образом, два потока теплоты – первичной и вторичной – являются теплопродукцией.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии.

1. Сократительный термогенез.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата в основном возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя.

Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Хотя при выполнении нагрузки срабатывают различные механизмы теплоотдачи, наблюдается рабочая гипертермия. Возможно, это связано со снижением гипоталамического уровня регуляции.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса. С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

2. Несократительный термогенез.

Он осуществляется путём ускорения процессов окисления и снижения эффективности сопряжения окислительного фосфорилирования. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

В скелетных мышцах повышение скорости несократительного термогенеза связано с уменьшением окислительного фосфорилирования за счёт разобщения различных этапов данного процесса. В печени повышение теплопродукции связано с активацией гликогенолиза и последующим расщеплением глюкозы. Повышение теплопродукции возможно за счёт распада бурого жира.

Бурый жир, богатый митохондриями и окончаниями симпатических нервов, расположен в затылочной области, между лопатками, в средостении по ходу крупных сосудов, в подмышечных впадинах. В условиях покоя до 10% тепла образуется в буром жире. При охлаждении интенсивность его распада заметно повышается.

Кроме того, повышение уровня образования тепла наблюдается за счёт специфико-динамического действия пищи.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной железы (разобщают окислительное фосфорилирование) и мозгового слоя надпочечников.

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

Источник: http://MirZnanii.com/a/7573/termoregulyatsiya-pri-myshechnoy-rabote

Терморегуляция

На основе физиологических процессов многие орга­низмы могут в определенных пределах менять температуру своего тела. Эта способность называется терморегуляцией.

Обычно терморегуляция сводится к тому, что температура тела поддерживается на более постоянном уровне, чем температура окружающей среды. Более разнообразны по способностям к терморегуляции животные.

Все живот­ные делятся по этому признаку на пойкилотермных — с переменной температурой и гомойотермных — теплокров­ных животных.

Настоящие гомойотермные животные — большинство птиц и млекопитающих. Все остальные организмы пойкилотермные. Однако среди них некоторые способны к тер­морегуляции при определенных условиях. Шмели, браж­ники, крупные вараны, некоторые рыбы (например, тунцы) могут повышать температуру тела в периоды высо­кой мышечной активности.

Особенно совершенны механизмы терморегуляции у гомойотермных животных. Они способны к химической и физической терморегуляции.

Химическая терморегуля­ция — способность регулировать теплопродукцию за счет изменений обмена. У млекопитающих есть специальная ткань, «ответственная» за теплопродукцию, — бурый жир. В митохондриях клеток этой ткани при клеточном дыхании не синтезируется АТФ, а вся энергия рассеивается в виде тепла.

Физическая терморегуляция — способность регулиро­вать теплоотдачу. В ней участвуют изменения морфологии, поведение и физиологические реакции. Например, зимой у птиц увеличивается масса перьев. Многие животные к зиме накапливают жир, и подкожный жировой слой обес­печивает теплоизоляцию.

В выступающих или поверхност­ных частях тела у ряда животных (например, в ластах китов, в лапах некоторых птиц) есть замечательное приспособле­ние — «чудесная сеть». Это сплетение сосудов, в котором вены тесно прижаты к артериям. Текущая по артериям кровь отдает тепло венам, оно возвращается к телу, а артериальная кровь поступает в конечности охлажденной.

При этом конечности, по существу, пойкилотермны, зато температуру остального тела можно поддерживать с мень­шими затратами энергии.

Чтобы снизить температуру, животные используют ис­парение жидкости с поверхности тела. У человека для этого служит потоотделение, у собак и многих птиц — учащенное дыхание; некоторые сумчатые в жару обмазывают шкуру обильной слюной.

У животных есть разнообразные поведенческие адап­тации к температуре. Пожалуй, наибольшее значение они имеют для животных пустыни, где днем поверхность почвы может нагреваться до 60°-70°С. Днем насекомые, рептилии и млекопитающие проводят жаркое время, зарывшись в песок или спрятавшись в норы: в глубине почвы темпера­тура не так резко колеблется и не такая высокая.

Для наземных сообществ характерна широтная зональ­ность — закономерная смена одних сообществ другими при продвижении от экватора к полюсам.

Экваториальную зону занимают вечнозеленые влажные леса.

По мере удаления от экватора они сменяются саваннами, пустынями, затем следуют степи умеренного пояса, листопадные леса уме­ренного пояса, северные хвойные леса, зона тундр и, наконец, холодные пустыни.

Соответственно для каждой зоны характерна своя при­способленность к данным температурным показателям у растений. Меняются сроки опадения листвы и созревания плодов, качество древесины. Морозоустойчивость связана с биохимическими процессами, происходящими в клетках растений. Происходит замена воды сложными органичес­кими веществами, чтобы не полопались клетки от мороза.

У животных баланс между уровнем теплопродукции (образование энергии) и теплоотдачи контролирует центр терморегуляции, который является частью системы центров гипоталамуса. Центр терморегуляции воспринимает сигналы терморецепторов кожи и подкожных тканей и термочувствительных нейронов гипоталамуса и осущест­вляет коррекцию температуры тела.

Читайте также:  Биосферные функции живого вещества - биология

Раздражение перифе­рических холодовых терморецепторов сопровождается уве­личением теплопродукции, главным образом благодаря интенсивному обмену веществ, появлению холодовой дрожи и уменьшению теплоотдачи за счет сужения кожных и подкожных кровеносных сосудов.

У млекопитающих в терморегуляции принимают участие железы внутренней секреции.

Рефлекторные механизмы терморегуляции. У человека существуют специальные нервные и гуморальные механиз­мы терморегуляции.

Химическая терморегуляция происходит благодаря не­посредственным влияниям нервных импульсов на уровень образования тепла в мышцах и внутренних органах. Парал­лельно с этим происходит и перераспределение крови – основного переносчика тепла в организме – путем расши­рения или сужения сосудов кожи, увеличения или умень­шения отделения пота.

Регуляция постоянства температуры тела и обмен ве­ществ осуществляется высшим отделом центральной нерв­ной системы — корой головного мозга. Наблюдения на людях показали, что изменения теплоотдачи могут возни­кать по сигналам из внешней среды, при некоторых пси­хических состояниях.

Регуляция постоянства температуры тела и обмен ве­ществ осуществляется высшим отделом центральной нерв­ной системы — корой головного мозга. Наблюдения на людях показали, что изменения теплоотдачи могут возни­кать по сигналам из внешней среды, при некоторых пси­хических состояниях.

Источник: http://www.bioaa.info/index.php/2009-12-22-13-02-41/306-2011-03-13-19-18…

Тепловой гомеостаз: совершенный механизм

Тепловой гомеостаз или терморегуляция – это физиологическая функция, которая поддерживает в организме человека и животных постоянную температуру тела (с небольшими колебаниями) с помощью регуляции теплопродукции и теплоотдачи. Тепловой гомеостаз является частью общего гомеостаза организма.

Нормальная температура внутренней среды организма и ее регуляция

В норме у человека температура мозга, крови и внутренних органов в среднем равна около 37˚С с колебаниями в ту или в другую сторону не более 1,5˚С. Изменение температуры крови и внутренних органов на 2 – 2,5˚С от среднего уровня уже вызывает нарушения в организме человека. Температура тела человека 42 – 43˚С и выше считается несовместимой с жизнью.

При высокой температуре окружающей среды, повышении темпа теплопродукции организма (например, при мышечной работе) терморегуляция осуществляется при помощи изменения количества теплоотдачи. Этот процесс называется физической терморегуляцией.

Терморегуляция при повышении температуры окружающей среды

Основной частью физической терморегуляции является сосудистая терморегуляция, которая представляет собой расширение или сужение кровеносных сосудов кожи, в результате чего к коже поступает больший или меньший объем крови и с ним отдается тепло из внутренних органов, то есть часть тепла, образованного в результате обмена веществ.

Максимальное расширение кровеносных сосудов кожи из состояния максимального их сужения увеличивает теплоотдачу в шесть раз. Не все участки кожного покрова равноценно участвуют в терморегуляции.

Большая теплоотдача возможна от кистей рук – до 60% всей теплопродукции, тогда как площадь кистей составляет не более 6% от общей площади кожного покрова. При физической работе с участием мышц особое значение приобретают участки кожи над работающими мышцами.

Часть крови от работающих мышц устремляется непосредственно в вены этих участков кожи, что значительно облегчает отдачу тепла от мышц.

Терморегуляция при нормальной температуре окружающей среды

По мере приближения температуры окружающей среды к температуре тела эффективность сосудистой терморегуляции падает и на смену ей приходит следующая реакция физической терморегуляции – потоотделение.

Потоотделение представляет собой просачивание воды через поверхность кожи, где она испаряется. Процесс этот называется также неощутимой перспирацией.

За счет него поглощается примерно пятая часть теплопродукции основного обмена.

Неощутимая перспирация не регулируется и не очень зависит от температуры окружающей среды. При угрозе перегревания симпатическая нервная система просто активизирует работу потовых желез в коже. При интенсивном функционировании потовых желез выделяется до 1,5 л пота в час и больше.

Терморегуляция при понижении температуры окружающей среды

При понижении температуры окружающей среды и угрозе переохлаждения, прежде всего, прекращается потоотделение и происходит сужение кровеносных сосудов кожи.

Если температура кожи продолжает падать и угроза переохлаждения не устраняется, то включается так называемая химическая терморегуляция – повышение теплопродукции организма за счет специальных форм сократительной активности скелетных мышц и повышения физиологической деятельности других органов (например, печени).

При сравнительно слабом охлаждении в мышцах при их видимом покое периодически возникают одиночные сокращения отдельных волокон – это так называемый терморегуляционный мышечный тонус, который может повысить теплопродукцию организма на 20 – 40%.

При дальнейшем охлаждении возникает холодовая мышечная дрожь, которая проявляется периодическими сериями быстрых сокращений. Теплопродукция при этом увеличивается в 2 – 3 раза и больше. Терморегуляционный мышечный тонус и дрожь при охлаждении наиболее отчетливо выявляются в мышцах головы, шеи и плечевого пояса.

После длительной адаптации к холоду теплопродукция мышечных сокращений при холодовой дрожи и терморегуляционном мышечном тонусе возрастает в 1,5 – 2 раза. Этот процесс стимулируется гормоном стресса норадреналином и гормоном щитовидной железы тироксином.

Управление тепловым гомеостазом

Управление всеми реакциями, которые позволяют поддерживать постоянную температуру тела в различных условиях, осуществляется специальными нервными центрами, расположенными в головном мозге. Основным центром терморегуляции является отдел головного мозга, который называется гипоталамусом.

Центры терморегуляции получают информацию по проводящим путям от чувствительных к температуре нервных клеток, расположенных в различных отделах центральной нервной системы и от периферических терморецепторов, расположенных в коже.

После получения и анализа информации гипоталамус «отдает приказ» о включении тех или иных регуляторных систем.

Тепловой гомеостаз – это один из самых совершенных механизмов общего гомеостаза организма человека.

Галина Романенко

Источник: http://www.womenclub.ru/womenillness/3732.htm

Терморегуляция тела

Рассмотрим эти виды терморегуляции подробнее. 

Химическая терморегуляция

Регулирование объёма теплопродукции

Химическая терморегуляция теплообразования – осуществляется за счёт изменения уровня обмена веществ, что приводит к изменению образования тепла в организме. Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ.

При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота – 65–70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты – первичной и вторичной – являются теплопродукцией.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии.

К таким механизмам относятся сократительный и несократительный термогенез.

Сократительный термогенез

Этот вид терморегуляции работает если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле “встают дыбом”, появляются “мурашки”).

С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня.

Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Несократительный термогенез

Этот вид терморегуляции может приводить, как повышению, так и к понижению температуры тела.

Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ. А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Физическая терморегуляция

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

  1. Излучение
  2. – отдача тепла в виде электромагнитных волн инфракрасного диапазона. За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным». Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и градиенту температуры. При температуре окружающей среды 20°с и относительной влажности воздуха 40–60% организм взрослого человека рассеивает путём излучения около 40–50% всего отдаваемого тепла.

  3. Теплопроведение (кондукция)
  4. – способ отдачи тепла при непосредственном соприкосновении тела с другими физическими объектами. Количество тепла, отдаваемого в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади соприкасающихся поверхностей, времени теплового контакта и теплопроводности.

  5. Конвекция
  6. – теплоотдача, осуществляемая путём переноса тепла движущимися частицами воздуха (воды). Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. В условиях температурного комфорта этим способом тело теряет до 15% всего отдаваемого тепла.

  7. Испарение – отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых дыхательных путей. За счёт испарения организм в условиях комфортной температуры отдаёт около 20% всего рассеиваемого тепла. Испарение делится на 2 вида.

Неощущаемая перспирация – испарение воды со слизистых дыхательных путей (через дыхание) и воды, просачивающейся через эпителий кожного покрова (Испарение с поверхности кожи. Оно идёт даже в случае, если кожа сухая.).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки.

Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

Ощущаемая перспирация – отдача тепла путём испарения пота. В среднем за сутки при комфортной температуре среды выделяется 400–500 мл пота, следовательно, отдаётся до 300 ккал энергии. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно.

Управление терморегуляцией

Гипоталамус

Система терморегуляции состоит из ряда элементов с взаимосвязанными функциями. Информация о температуре поступает от терморецепторов и при помощи  нервной системы попадает в мозг.

Основную роль в терморегуляции играет гипоталамус. Разрушение его центров или нарушение нервных связей ведёт к утрате способности регулировать температуру тела. В переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи.

При разрушении нейронов переднего гипоталамуса организм плохо переносит высокие температуры, но физиологическая активность вусловиях холода сохраняется. Нейроны заднего гипоталамуса управляют процессами теплопродукции.

При их повреждении нарушается способность к усилению энергообмена, поэтому организм плохо переносит холод.

Эндокринная система

Гипоталамус управляет процессами теплопродукции и теплоотдачи, посылая нервные импульсы к железам внутренней секреции, главным образом щитовидной и надпочечникам.

Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению её гормонов, ускоряющих обмен веществ и, следовательно, теплообразование.

Роль надпочечников связана с выделением ими в кровь катехоламинов, которые, усиливая или уменьшая окислительные процессы в тканях (например, мышечной), увеличивают или уменьшают теплопродукцию и сужают или увеличивают кожные сосуды, меняя уровень теплоотдачи.

Источник: http://xn—-7sbejafo4cgboiqm.xn--p1ai/thermoregulation.htm

Понятие о терморегуляции. Химическая и физическая терморегуляция

Терморегуляция(от термо… и лат. regulo – регулирую), теплорегуляция, способность человека, млекопитающих животных и птиц поддерживать температуру мозга и внутренних органов в узких определённых границах, несмотря на значительные колебания температуры внешней среды и собственной теплопродукции.

Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела как в нормальных условиях, так и при изменении температуры окружающей среды.

У человека усиление теплообразования вследствие увеличения интенсивности обмена веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта.

Для человека в обычной легкой одежде эта зона находится в пределах 18—20°С, а для обнаженного равна 28 °С.

Оптимальная температура во время пребывания в воде выше, чем на воздухе. Это обусловлено тем, что вода, обладающая высокой теплоемкостью и теплопроводностью.Наиболее интенсивное теплообразование в организме происходит в мышцах.

Даже если человек лежит неподвижно, но с напряженной мускулатурой, интенсивность окислительных процессов, а вместе с тем и теплообразование повышаются на 10%.

Небольшая двигательная активность ведет к увеличению теплообразования на 50—80 %, а тяжелая мышечная работа — на 400— 500%.

В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии.

Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб).

При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200 %. .

Увеличение теплообразования, связанное с произвольной и непроизвольной (дрожь) мышечной активностью, называют сократительным термогенезом. Наряду с этим возрастает уровень теплообразования и в других тканях. Особое место занимает так называемый бурый жир, количество которого значительно у новорожденных.

Бурый оттенок жира придается более значительным числом окончаний симпатических нервных волокон и большим числом митохондрий. За счет высокой скорости окисления жирных кислот в бурой жировой ткани процесс теплообразования идет гораздо быстрее, чем в обычной, и почти без синтеза макроэргов.

Этот механизм срочного теплообразования получил название «несократительный термогенез».

В химической терморегуляции значительную роль играют также печень и почки. Температура крови печеночной вены выше температуры крови печеночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает.

Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов, поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплообразование.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды.

Теплоотдача осуществляется путем теплоизлучения (радиационная теплоотдача), или конвекции, т. е. движения и перемещения нагреваемого теплом воздуха, теплопроведения, т. е. отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела, и испарения воды с поверхности кожи и легких.

У человека в обычных условиях потеря тепла путем тепло проведения имеет небольшое значение, так как воздух и одежда являются плохими проводниками тепла. Радиация, испарение и конвекция протекают с различной интенсивностью в зависимости от температуры окружающей среды.

У человека в состоянии покоя при температуре воздуха около 20 °С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, с помощью радиации теряется 66 %, испарения воды — 19 %, конвекции — 15 % от общей потери тепла организмом.

При повышении температуры окружающей среды до 35°С теплоотдача с помощью радиации и конвекции становится невозможной, и температура тела поддерживается на постоянном уровне исключительно с помощью испарения воды с поверхности кожи и альвеол легких.

Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ. При увеличении теплообразования в результате мышечной работы возрастает значение теплоотдачи, осуществляемой с помощью испарения воды. Одежда уменьшает теплоотдачу.

Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух — плохой проводник тепла. Теплоизолирующие свойства одежды тем выше, чем мельче ячеистость ее структуры, содержащая воздух. °С. Наоборот, обнаженное тело теряет тепло, так как воздух на его поверхности все время сменяется.

Поэтому температура кожи обнаженных частей тела намного ниже, чем одетых.

Температура кожи, а следовательно, интенсивность теплоизлучения и теплопроведения могут изменяться в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови.

На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются. При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается.

Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови.

Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче с помощью радиации и конвекции.

Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды основное значение имеет испарение пота с поверхности кожи.

интенсивно потоотделение происходит при высокой окружающей температуре во время мышечной работы, когда возрастает теплообразование в самом организме. При высокой окружающей температуре дыхательный центр рефлекторно возбуждается, при низкой — угнетается, дыхание становится менее глубоким.

К проявлениям физической терморегуляции следует отнести также изменение положения тела. Когда собаке или кошке холодно, они сворачиваются в клубок, уменьшая тем самым поверхность теплоотдачи; когда жарко, животные, наоборот, принимают положение, при котором поверхность теплоотдачи максимально возрастает.

Дата добавления: 2016-05-30; просмотров: 3040;

Источник: https://poznayka.org/s2266t1.html

Ссылка на основную публикацию