Клеточный уровень. Клеточная теория

  • Объедините в один блок все темы, в которых отражен клеточный уровень жизни.
  • Проверяйте знания ученика разными типами заданий, модифицируйте задания.
  • Используйте контроль знаний и умений как доминирующую форму работы при подготовке к экзаменам.
  • Разъясните школьнику как он должен работать: как изучать текст, рисунки, как пользоваться справочными материалами, какие задавать вопросы, как контролировать свой учебный процесс. Приемы работы должны стать навыками ученика.
  • Делегируйте учебную деятельность абитуриенту.
  • Не забывайте о необходимости психологической подготовки выпускника к экзамену.
  • Обсудите простые задания, которые все же требуют сосредоточенности, и в которых из-за невнимательности даже «сильные» ученики допускают ошибки (например, задания на работу с таблицами или на выбор неверных утверждений).
  • Используйте только качественные, проверенные учебники и пособия.

Согласно общим требованиям и кодификатору ЕГЭ, выпускник должен знать основные положения клеточной теории, а также названия, особенности строения и функций органоидов клетки. Кроме того, экзамен проверяет предметные и метапредметные умения ученика:

  • Доказывать, что клетка — это открытая система.
  • Сравнивать клетки разных царств.
  • Устанавливать взаимосвязь между строением и функциями клеток и тканей разных типов.
  • Описывать и сравнивать этапы клеточного цикла в митозе и мейозе.
  • Применять полученные знания при решении цитологических и генетических задач.

Примерный план изучения клеточной теории

  • История открытия клетки и создания клеточной теории. Имена создателей и их роль в становлении теории;
  • Методы цитологии (как повторение);
  • Про и эукариотические клетки в сравнении. Строение клеток разных царств. Химический состав клеток;
  • Функции клеточных структур, их взаимосвязь. Обмен веществ;
  • Наследственный аппарат клетки;
  • Жизненный цикл клетки;
  • Сравнение митоза и мейоза;
  • Спорогенез, гаметогенез;
  • Эмбриогенез;
  • Культура клеток и тканей.

Полезно обратить внимание ученика на интегрирующую роль клеточной теории, повторяя таким образом направления развития биологической науки. Потому что:

  • Клеточная теория лежит в основе понимания биологических процессов в биосистемах.
  • Клетка основа индивидуального развития многоклеточных структур.
  • Клетка и ее жизненный цикл лежит в основе эволюционных процессов.
  • С клеткой, ее наследственным материалом связана передача наследственной информации.
  • Клеточный уровень жизни является исходным для формирования более высоких уровней жизни.
  • Клеточная теория предсказывает различные направления ее развития: таксономическое (про и эукариоты), морфологическое (ткани, органы), физиологическое (процессы), генетическое (ген, геном, кариотип и т.д.), эволюционное (от одноклеточности к многоклеточности).

Клеточный уровень. Клеточная теория

Биология. 11 класс. Базовый уровень. Рабочая тетрадь

Рабочая тетрадь разработана к учебнику «Биология. Базовый уровень» для учащихся 11 класса (авт. И.Н. Пономарёва, О.А. Корнилова, Т.Е. Лощилина, П.В. Ижевский), входящему в систему учебно-методических комплектов «Алгоритм успеха».

Предлагаемые в ней задания, имеющие познавательно-обучающий характер, соответствуют названным разделам и параграфам учебника.

Они позволят учителю организовать дифференцированную практическую работу школьников, а ученикам — приобрести прочные знания по биологии.

Купить

Принципы работы с текстом на примере изучения темы «Митоз и мейоз»

Существует ряд вопросов, призванных помочь ученику понять текст с новой сложной информацией: О чем говорится в тексте? Что говорится в тексте об этом? Что это значит? В чем это заключается? Что далее говорится об этом? Как это доказывается? О чем это говорит? Какая мысль этим раскрывается? Рассмотрим на примере темы «Митоз и мейоз» как, ставя правильные вопросы и находя на них ответы, ученик может усвоить факты.

Митоз — непрямое деление эукариотической клетки, в результате которого сохраняется генетическая информация материнской клетки. Митозом могут делиться как диплоидные, так и гаплоидные клетки. Митоз обеспечивает вегетативное размножение организмов, рост, регенерацию тканей, эмбриональное развитие многоклеточных организмов и т.д.

Мейоз — это редукционное деление, при котором хромосомный набор образующихся гамет уменьшается вдвое. Мейоз состоит из двух последовательных процессов — первого деления мейоза и второго деления мейоза. Стадии мейоза: Мейозу предшествует интерфаза.

Каждая хромосома перед началом деления состоит из двух молекул ДНК, которые образуют две сестринские хроматиды, сцепленные центромерами. В это время клетка имеет диплоидный набор хромосом, а каждая хромосома состоит из двух молекул ДНК, поэтому в клетке находится 4с молекул ДНК.

Таким образом, перед началом деления в клетке набор хромосом и ДНК 2n4c. Половые клетки животных и споры растений формируются в результате мейоза.

Вопросы к тексту

  • Чем отличается деление эукариот от деления прокариот?
  • Какой набор и каких хромосом имеют клетки, появившиеся в результате митоза?
  • Что означает термин «редукционное деление»?
  • Какой формулой выражается число хромосом перед началом первого деления мейоза?
  • Если в соматической клетке содержится 42 хромосомы и 42 молекулы ДНК, то сколько хромосом и ДНК будет содержаться в клетке после первого деления? А после второго деления?
  • Увеличивается ли число хромосом в интерфазе? А число хроматид?
  • Чем интерфазная хромосома отличается от хроматиды?
  • Сколько хромосом будет в гаметах волка, если в его соматических клетках содержится 78 хромосом?

Что достигается данными вопросами?

  • Знание определения понятий «митоз» и «мейоз», понимание различий между ними и биологическими смыслами этих процессов.
  • Понимание различий между интерфазой и делением.
  • Понимание процесса изменений, происходящих в интерфазе и на протяжении деления клетки еще до изучения всех его стадий.
  • Провоцируется постановка проблемы: А каким образом возникает гаплоидный набор хромосом в гаметах после мейоза?
  • Понимание того, что гаметы и споры гаплоидны.
  • Профилактическая подготовка к решению задач № 27 в экзаменационной работе.

Примеры заданий по клеточной теории

Задание 1

Проанализируйте таблицу «Строение и функции нуклеиновых кислот». Заполните пустые ячейки таблицы, используя термины и словосочетания, приведенные в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

Нуклеиновая кислота Особенности строения Функция
ДНК ________________ (Б) Хранение наследственной информации
________________(А) Одноцепочная молекула Передача информации
тРНК «Клеверный лист» ________________ (В)

Список терминов и функций: 1. двойная спираль, 2. мономер, 3. состоит из аминокислот, 4. белок, 5. иРНК, 6. АТФ, 7. транспорт аминокислот.

Задание 2

Установите соответствие между признаком и структурой клетки, для которой характерен данный признак: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

  • Признак
  • А) состоит из двух субъединиц
  • Б) расположены на гранулярной ЭПС
  • В) состоит из белка и ДНК
  • Г) хранит наследственную информацию
  • Д) участвует в процессе трансляции
  • Е) разделена на плечи центромерой
  1. Структура
  2. 1)рибосома
  3. 2)хромосома

Задание 3

Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке структуры клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

Клеточный уровень. Клеточная теория

  1. обладает избирательной проницаемостью,
  2. состоит из гликогена и белков,
  3. встроенные белки выполняют разнообразные функции,
  4. имеет гидрофобные и гидрофильные участки,
  5. отсутствует у всех прокариотических клеток.

Задание 4

Рассмотрите электронную микрофотографию органоида клетки и определите: название органоида, его функцию в клетке, одномембранную или двумембранную структуру имеет органоид. Заполните пустые ячейки таблицы, используя термины, приведенные в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

Клеточный уровень. Клеточная теория

Название органоида Функция Количество (или отсутствие) мембран
________________ ( А) ________________ (Б) ________________ (В)

Список терминов:

  1. синтез белка,
  2. эндоплазматический ретикулум,
  3. аппарат Гольджи,
  4. синтез АТФ,
  5. упаковка и транспорт веществ,
  6. двумембранный,
  7. одномембранный,
  8. немембранный.

Задание 5

Все перечисленные ниже признаки, кроме двух, можно использовать для описания хлоропластов. Определите два признака, «выпадающие» из общего списка.

  1. двумембранные органоиды,
  2. используют энергию света для создания органических веществ,
  3. внутренние мембраны образуют кристы,
  4. на мембранах крист происходит синтез глюкозы,
  5. исходными веществами для синтеза углевода являются углекислый газ и вода.

Задание 6

Какой процесс изображен на рисунке и где он происходит? Что обозначено цифрами 1–3? Какой процесс предшествует процессу, изображенному на рисунке?

Клеточный уровень. Клеточная теория

Задание 7

В аппарате Гольджи различают два полюса. Один полюс обращен к эндоплазматической сети, другой к цитоплазматической мембране. Как такое положение связано с функциями органоида? В каких клетках АГ наиболее развит?

Задание 8

Ответьте на вопросы:

  1. Каково значение клеточной теории в развитии науки?
  2. Почему, несмотря на очевидные различия в строении и функциях клеток разных тканей, говорят о единстве клеточного строения живого?
  3. Что общего и различного в строении и функциях хлоропластов и митохондрий?
  4. Как строение клеточной мембраны соответствует выполняемым ею функциям?

Задание 9

Назовите основные открытия в биологии, позволившие сформулировать клеточную теорию.

Задание 10

Докажите, что клетка является открытой саморегулирующейся системой.

Задание 11

Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке стадии жизненного цикла клетки. Определите два признака, «выпадающие» из общего списка и запишите цифры, под которыми они указаны.

Клеточный уровень. Клеточная теория

  1. хромосомы образуют экваториальную пластинку,
  2. клетка находится в анафазе I мейоза,
  3. у каждого полюса клетки удвоенный набор ДНК,
  4. нити веретена прикреплены к центромерам,
  5. набор хромосом в клетке идентичен материнскому.

Задание 12

Установите соответствие между типами деления клетки и их биологическим значением для организма: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

  • Биологическое значение
  • А) обеспечивает регенерацию тканей
  • Б) образует споры растений
  • В) обеспечивает генетическую стабильность вида
  • Г) лежит в основе роста организма
  • Д) обеспечивает комбинативную изменчивость
  • Е) образует гаметы животных
  1. Типы деления
  2. 1) мейоз
  3. 2) митоз

Клеточный уровень. Клеточная теория

Биология. 11 класс. Учебник

Существенным преимуществом учебника является его связь с электронным приложением, размещенным на интернет-ресурсах корпорации «Российский учебник».

Данное электронное приложение содержит рисунки, фотографии, схемы, анимированные сюжеты, видеофрагменты, 3D-модели, виртуальные экскурсии, практические работы, интерактивные задания, тесты, кроссворды и другие объекты.

Электронная составляющая не являются компонентом, обязательным для использования. Печатный учебник — полная и достаточная версия курса.

Купить

Задание 13

Установите соответствие между процессами и стадиями жизненного цикла клетки: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

  • Процессы
  • А) спирализация хромосом
  • Б) интенсивный обмен веществ
  • В) удвоение центриолей
  • Г) Образование веретена деления
  • Д) редупликация ДНК
  • Е) исчезновение ядерной оболочки
  1. Стадии жизненного цикла клетки
  2. 1) интерфаза
  3. 2) профаза

Задание 14

Найдите и исправьте ошибки в тексте.

(1) Мейоз — это особая форма деления клеточного ядра. (2) Перед началом мейоза количество хромосом и молекул ДНК удваивается. (3) Таким образом, в каждом ядре, в котором начинается мейоз, содержится диплоидный набор хромосом и удвоенный набор молекул ДНК.

(4) В метафазе первого деления мейоза хромосомы расходятся к полюсам клетки. (5) У полюсов образуются гаплоидные наборы двухроматидных хромосом. (6) Каждая из этих удвоенных хромосом в телофазе второго деления мейоза попадает в гамету.

(7) Распределение гомологичных хромосом по гаметам происходит независимо друг от друга

Задание 15

Все перечисленные ниже признаки, кроме двух, можно использовать для описания мейоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

  1. мейоз состоит из двух последовательных делений ядра клетки,
  2. в интерфазе удваивается число хромосом и ДНК,
  3. в профазе I происходит кроссинговер,
  4. в анафазе I к полюсам расходятся однохроматидные хромосомы,
  5. в телофазе II образуются гаплоидные гаметы.

Задание 16

Какие клетки и каким способом деления образуются в тычинках покрытосеменных растений из материнских клеток спор? Каким клеткам и в результате какого деления дают начало образовавшиеся клетки?

Задание 17

Определите число хромосом и число молекул ДНК при формировании пыльцевого зерна сосны перед началом деления материнской клетки микроспоры и каждой клетки тетрады микроспор. Ответ обоснуйте.

Читайте также:  Углеводы - что это такое?

Задание 18

Найдите три ошибки в тексте, дайте правильную формулировку.

(1) Процесс формирования половых клеток у цветковых растений подразделяется на два этапа — спорогенез и гаметогенез. (2) Споры образуются у растений путем митотического деления материнских клеток спор.

(3) Процесс образования микроспор или пыльцевых зерен у растений называют микроспорогенезом, а процесс образования мегаспор макроспорогенезом. (4) Из микроспоры в результате мейоза образуются вегетативное и генеративное ядра. (5) Генеративное ядро делится митозом и образует два спермия.

(6) Макроспора в результате двойного митотического деления образует восьмиядерный зародышевый мешок. (7) Зародышевый мешок — это женский гаметофит цветкового растения.

#ADVERTISING_INSERT#

Клеточная теория: развитие и положения

  • История
  • Основные положения теории Шванна и Шлейдена
  • Вклад Вирхова в развитие теории
  • Современная теория
  • Видео
  • В наше время ни для кого не секрет, что вся живая материя состоит из клеток, имеющих в свою очередь интересное и сложное строение. Но в прошлом открытие этого факта имело большое научное значение для развития биологии, и учение о клеточном строении органики вошло в историю под названием «клеточная теория».

    История

    Открытие клеточной теории берет свое начало в далеком 1655 году, когда английский ученый Р. Гук на основе своих многочисленных наблюдений за живой материей впервые предложил термин «клетка». Сделал он это в своем знаменитом научном труде «Микрография», который впоследствии вдохновил другого талантливого ученого из Голландии Левенгука на изобретение первого микроскопа.

    Появление микроскопа и практическое наблюдение через него подтвердило идеи Гука, и клеточная теория получила дальнейшее развитие.

    И вот уже в 1670-е годы итальянский врач Мальпиги и английский натуралист Дрю описывают различные формы клеток у растений.

    В то же время сам изобретатель микроскопа Левенгук наблюдает мир одноклеточных организмов – бактерий, инфузорий, амеб. Будучи человеком творческим Левенгук первым изображает их на своих рисунках.

    Клеточный уровень. Клеточная теория

    Так выглядели его рисунки.

    Тем не менее, ученые XVII века представляли клетки в качестве пустот в непрерывной массе растительных тканей, о внутреннем строении клетки еще ничего не было известно. Не было значительного прогресса в этом направлении и в следующем XVIII веке. Хотя в это время стоит отметить труды немецкого ученого Фридриха Вольфа, который пытался сравнивать развитие клеток у растений и животных.

    Первые попытки проникнуть во внутренний мир клетки были предприняты уже в XIХ веке, чему способствовало появление улучшенных микроскопов, в том числе наличие у последних ахроматических линз.

    Так ученые Линк и Молднхоуэр обнаруживают в клетках наличие самостоятельных стенок, то, что позже станет известно как мембрана.

    А в 1830 году английский ботаник Роберт Броун впервые описывает ядро клетки, как важную ее составную часть.

    Во второй половине XVII века учение о клеточной теории и строении клетки оказывается в центре внимания всех ученых-биологов, и даже выделяется в отдельную под науку – цитологию.

    Основные положения теории Шванна и Шлейдена

    Большой вклад в развитие клеточной теории на этом этапе был сделан немецкими учеными Т. Шванном и М. Шлейденом, которые в частности сформулировали основные постулаты клеточной теории, вот они:

    • Все без исключения организмы состоят из маленьких одинаковых частей – клеток, которые растут и развиваются по одним и тем же законам.
    • Общий принцип развития элементарных частей организма – клеткообразование.
    • Каждая клетка представляет собой сложный биологический механизм и является своего рода отдельным индивидом. Совокупность же клеток образует ткани.
    • В клетках происходят разные процессы, такие как возникновение новых клеток, увеличение клеток в размерах, утолщение их стенок и так далее.

    Пожалуй, тут заключена основная суть клеточной теории.

    Вклад Вирхова в развитие теории

    Правда, Шванн и Шлейден ошибочно полагали, что клетки образуются из некого «неклеточного вещества». Эта идея впоследствии была опровергнута другим известным немецким биологом Р.

    Вирховым, который доказал, что «всякая клетка может происходить исключительно из другой клетки», подобно тому как растение может происходить только от другого растения, и животное только от другого животного.

    Это положение стало также одним из важных частей клеточной теории.

    Современная теория

    Идеи Шванна, Шлейдена, Вирхова и других создателей и авторов этой теории, хотя и были передовыми и революционными как для своего времени, тем не менее, сейчас им уже почти два века, и с тех пор развитие науки в этом направлении продвинулось еще дальше. О чем же нам говорят основные положения современной клеточной теории? Вот о чем:

    • Клеточная структура является, хотя и главной, но не единственной формой существования жизни. Так как помимо клеток есть еще и вирусы (открытые русским ученым Дмитрием Ивановским в 1892 году), которые, по сути, клетками не являются, но только свои свойства могут проявлять внутри клеток, проникая в них аки паразит.
    • Существует два типа клеток: прокариотические, не имеющие ограниченного мембранами ядра и эукариотические, имеющие ядро, мембрану, все как положено порядочной клетке. К эукариотическим клеткам относятся клетки растений и животных, к клетками прокариотическим – клетки бактерий и архебактерий. Таким образом, клетки растений и животных представляют собой условно биологические системы более высокого уровня организации, чем клетки бактерий.
    • Клеточная теория прошлого рассматривала живой организм как некую суму клеток, чем игнорировалась целостность организма. Современная клеточная теория рассматривает эту сумму через призму целостности организма.
    • Также догматическая клеточная теория прошлого игнорировала особенности неклеточных структур в организме, и даже порой признавала их неживыми. На самом же деле в организме помимо собственно клеток есть многоядерные надклеточные структуры (синцитин, симпласты), безядерное межклеточное вещество, обладающее к тому же способностями к метаболизму. Современная клеточная теория занимается активным изучением этих элементов, так удалось выяснить, что синцитин и симпласты являются продуктом слияния клеток, а внеклеточное вещество образовалось в результате секреции клеток.

    И вполне возможно, что в будущем клеточная теория получит еще большее развитие, учеными биологами будут найдены новые не известные ранее складовые части клетки, будут открыты новые механизмы ее работы, ведь клетка хранит в себе еще немало тайн и загадок.

    А наиболее интересная загадка, которую хранит в себе клетка – это проблема ее старения (и впоследствии умирания), и если ученым удастся ее решить, хотя бы частично, как знать, насколько смогла бы увеличиться продолжительность человеческой жизни, но это уже тема для другой статьи.

    Видео

    В завершение по традиции вашему вниманию образовательное видео по теме нашей статьи.

    Клеточный уровень. Клеточная теория

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

    Основные положения клеточной теории и значение в науке и жизни

    Изобретение микроскопа и усовершенствование методов микроскопических исследований позволили открыть и изучить клетку.

    Первым увидел клетку английский ученый Р. Гук. В 1665 году при помощи увеличительных линз он стал свидетелем деления тканей коры пробкового дуба на ячейки — клетки. Но, как позже стало известно, он стал первооткрывателем не клетки в прямо значении этого слова, а внешних оболочек растительных клеток.

    Открытие мира одноклеточных организмов связано с А. Левенгуком — он первым увидел животные клетки, а именно эритроциты. Дальнейшее описание животных клеток принадлежит Ф. Фонтане. Поскольку четкого представления о том, что такое клетка, не было, исследования ученого не привели к понятию универсальности клеточного строения.

    Первоначально Р. Гук считал, что клетки представляют собой пустоты или поры между волокнами растений. Это мнение нашло подтверждение в ходе исследований, проведенных М. Мальпиги, Н. Грю, Ф. Фонтана, которые наблюдали за растительными объектами под микроскопом. Они назвали клетки «пузырьками».

    Замечание 1

    Наибольший вклад в развитие микроскопических исследований организмов растений и животных принадлежит А. Левенгуку. Результаты своих исследований он оформил в книгу «Тайны природы».

    По иллюстрациям, представленным в этой книге, понятны клеточные структуры растительных и животных организмов, хотя самим ученым эти описанные структуры не понимались как клеточные образования. Все потому, что исследования ученого были, скорее, случайные, чем систематические.

    В начале 19 века такие ученые как Г. Линк, Г. Травенариус и К. Рудольф в своих исследованиях продемонстрировали, что клетки не являются пустотами — это самостоятельные образования, ограниченные стенками. Было доказано, что у клеток есть содержимое, названное Я. Пуркинье протоплазмой. Р. Броун выделил ядро в качестве постоянной части клеток.

    Далее Т. Шванн занимался анализом данных литературы о клеточном строении растений и животных. Он сопоставил имеющиеся данные с собственными исследованиями, результатом чего стала его собственный труд.

    Ученый продемонстрировал, что клетки — элементарные живые структурные единицы растительных и животных организмов. И. Шванн пояснил, что у них есть общий план строения и образуются они одинаковым способом. Все это стало основой клеточной теории. Поэтому Т.

    Швана можно считать тем, кто стоял у истоков создания клеточной теории.

    Перед тем как сформулировать основные положения клеточной теории, на протежении долгого периода времени ученые накапливали наблюдения за строением одноклеточных и многоклеточных организмов. Одновременно с этим совершенствовались и различные оптические методы в исследованиях.

    Все клетки бывают двух типов: ядерные (эукариотические) и безъядерные (прокариотические). Организмы животных строятся на экукариотические клетках. Нет ядер только у красных клеток крови млекопитающих — эритроциты, которые теряют свои ядра в процессе развития.

    В ходе изучения строения и функций клеток менялось и определение клетки.

    Определение 1

    Сегодня под клеткой понимают структурно упорядоченную систему биополимеров, ограниченную активной оболочкой. Биополимеры образуют ядро и цитоплазму, принимают участие в единой совокупности процессов метаболизма и обеспечивают поддержку и воспроизведение самой системы.

    Клеточная теория — это обобщенное представление о строении клетки, являющейся единицей живого, ее размножении и роли в процессе формирования многоклеточных организмов.

    Открытия в 19 веке, связанные с клеткой, были связаны с развитием микроскопии. В это же время происходит изменение представления о клетке. Теперь основой клетки стала считаться не клеточная оболочка, а ее содержимое — протоплазма. Также происходит открытие ядра как постоянного элемента клетки.

    Благодаря тому, что появилась четкая информация о строении и развитии клетки, стало возможным ее обобщить. В 1839 году такое обобщение сделал Т. Шванн, который и сформулировал клеточную теорию. Автор клеточной теории считал, что между клетками животных и растений нет принципиальной разницы. В этом, в общем, и заключается сущность клеточной теории.

    Развитием этой теории позже занимался немецкий патолог Р. Вирхов. Он является автором идеи, что возникновение клетки происходит исключительно из другой клетки при помощи размножения.

    Читайте также:  Вирусные заболевания - биология

    Положения клеточной теории

    Положения клеточной теории, которые постепенно уточнялись и дополнялись, были опубликованы в труде под названием «Микроскопические исследования о соответствии в строении и произрастании животных и растений» (1839 г). Эта работа принадлежит Т. Шванну.

    Вот основные положения клеточной теории:

    • клетка является основной элементарной единицей строения, развития и функционирования любого живого организма. То есть, мельчайшей единицей живого;
    • у всех организмов клетки гомологичны — похожи по своему химическому строению, главным проявлениям жизненных процессов, обмену веществ;
    • основной способ размножения клеток — деление. Образование новой клетки происходит путем деления материнской клетки;
    • клетки сложных многоклеточных организмов имеют специализацию по выполняемым ими функциям и образуют ткани. Ткани лежат в основе органов, которые взаимосвязаны различными формами регуляции: межклеточными, нервными и гуморальными.

    Нужна помощь преподавателя? Опиши задание — и наши эксперты тебе помогут!

    Замечание 2

    Активное развитие в 19 и 20 веках такой науки как цитология способствовало подтверждению основных положений клеточной теории. Она же предоставила новые данные о строении и функциях клетки.

    Кроме того, отдельные тезисы клеточной теории, предложенные Т. Шванном, были исключены из теории. К примеру, он считал, что отдельная клетка многоклеточного организма способна самостоятельно функционировать, что многоклеточный организм — простая совокупность клеток, что неклеточная «бластема» — основа развития клетки.

    После усовершенствования, остались следующие положения клеточной теории:

    • клетка является наименьшей единицей живого. Ей свойственно все, что определяет «живое»: рост, движение, обмен веществ и энергии, изменчивость, адаптация, раздражительность, репродукция, старение и смерть;
    • у клеток различных организмов наблюдается схожесть в общем плане строения — это обусловлено похожестью общих функций, которые направлены на поддержание жизни клеток и их размножение. Специфичность выполняемых клетками функций определяет разнообразие клеточных форм;
    • размножение клетки осуществляется путем деления материнской клетки (имеет место предыдущее воспроизведение ее генетического материла);
    • клетка — часть целостного организма. Развитие, функции и особенности строения клеток определяются всем организмом. Это результат взаимодействия тканей, органов, аппаратов и систем органов в функциональных системах.

    Замечание 3

    Клеточная теория на современном этапе развития биологии во многом отличается от теории и взглядов на клетку, существовавших не только в 19 веке, в период формулировки Т. Шванном первой клеточной теории, но и в середине 20 века.

    Сегодня клеточная теория — это система научных взглядов, представленная в виде теорий, законов и принципов.

    Главные положения клеточной теории актуальны и сегодня, несмотря на то, что за 150 лет о структуре, развитии и жизнедеятельности клеток были получены новые сведения.

    Значение клеточной теории

    Клеточная теория в науке открыла и укрепила представление о клетке как важнейшей составляющей всех организмов и главным их строительным элементом. Клетка является эмбриональной основой многоклеточных организмов, поскольку любой организм развивается с зиготы.

    Благодаря клеточной теории можно говорить о единстве живой природы. Открытие этой теории — едва ли не самое важное событие в области биологии.

    Клеточная теория стимулировала развитие таких наук как эмбриология, физиология и гистология. На ее основе возникло материалистическое понимание жизни, стало возможным объяснение эволюционной взаимосвязи между организмами, формулировка сущности онтогенеза.

    Несмотря на то, что сведения о строении, развитии и функционировании клетки постоянно пополняются, основные положения клеточной теории, сформулированные более 100 лет назад, остаются актуальными.

    Клетка — основа всех биохимических и физиологических процессов в организме, ведь все эти процессы происходят непосредственно на клеточном уровне. Клеточная теория позволила сделать вывод о схожести химического состава всех клеток и подтвердить единство органического мира.

    Клеточная теория является одни из биологических обобщений, свидетельствующих о клеточном строении всех организмов.

    Замечание 4

    Наряду с законом превращения энергии и эволюционной теорией Дарвина, это одно из наиболее значимых открытий в области естествознания 19 века.

    Клеточная теория оказала заметное влияние на развитие биологии как науки. Она указала на единство живой природы и выделила структурную единицу этого единства — клетку.

    Помимо огромного влияния на биологию как науку, теория стала фундаментом для развития других дисциплин: эмбриологии, гистологии, физиологии. С ее помощью удалось объяснить родственные взаимосвязи организмов, механизм индивидуального развития.

    Теория является важным обобщением современной биологии, системой положений и принципов, раскрывающими механизмы роста, развития и размножения организмов.

    Тест ЕГЭ Биология 11 класс Бесплатно Клеточная теория. Макро и микроэлементы клетки

    Клеточная теория способствовала пониманию того, что клетка является самой мельчайшей единицей жизни, которой присущи все признаки живого (размножение, обмен веществ, дыхание и др.).

    До изобретения микроскопа люди не знали о существовании клеток.

    Прибор для изучения микромира,микроскоп. был изобретен приблизительно в 1590 году голландскими механиками Гансом и Захарием Янсенами.

    На основе это этого микроскопа был создан сложный микроскоп Корнелиусом Дреббелем (1572–1634).

    В 1665 году английский ученый-физик Роберт Гук (1635–1703) усовершенствовал микроскоп и технологию изготовления линз. Желая убедиться в улучшении качества изображения, он рассматривал под ним срезы пробкового дерева, древесного угля и срезы живых растений.

    • На срезах растений он обнаружил мельчайшие поры, которые были похожи на пчелиные соты, и назвал их клетками.
    • Во второй половине XVII века появились работы виднейших микроскопистов Марчелло Мальпиги (1628–1694) и Неемии Грю (1641–1712), также обнаруживших ячеистое (клеточное) строение многих растений.
    • Антони ван Левенгук самостоятельно разработал конструкцию микроскопа, принципиально отличавшуюся от уже существующей, и усовершенствовал технологию изготовления линз, которые достигали большего увеличения, что позволило открыть одноклеточных животных (инфузорий), а также бактерии и дрожжи.
    • В клетках растений обнаружил ядра, хлоропласты, утолщения клеточных стенок.
    • Описал и зарисовал почкование гидр.
    • Гуго фон Моль различил в клетках растений живое вещество и водянистую жидкость (клеточный сок), обнаружил поры.
    • Английский ботаник Роберт Броун (1773–1858) в 1831 году открыл ядро в клетках орхидей, затем оно было обнаружено во всех растительных клетках.
    • Матиас Шлейден (1804–1881) изучал развитие и дифференциацию разнообразных клеточных структур высших растений, рассмотрел в ядрах клеток чешуи лука округлые тельца-ядрышки (1842).
    • В 1827 году русский ученый-эмбриолог Карл Бэр обнаружил яйцеклетки человека и других млекопитающих и доказал формирование многоклеточного животного организма из единственной клетки- оплодотворенной яйцеклетки, а также сходство стадий зародышевого развития многоклеточных животных, которое наводило на мысль о единстве их происхождения.
    • Все научные открытия, которые были накоплены к середине XIX века, требовали обобщения, в результате и появилась клеточная теория.

    В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие при митозе.

    С 1903 г. стала развиваться генетика.

    Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур.

    XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика.

    Без создания клеточной теории это развитие было бы невозможным.

    Клеточная теория

    Клеточная теория — это фундаментальное обобщение биологии, которое определяет взаимосвязь всех проявлений жизни на Земле с клеткой, характеризует клетку одновременно как целостную самостоятельную живую систему и как составную часть многоклеточных организмов растений и животных.

    Общие сведения

    Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставила базу для понимания закономерностей живого мира и для развития эволюционного учения.

    Маттиас Шлейден и Шванн сформулировали клеточную теорию, основываясь на множестве исследований клетки (1838).

    Вирхов позднее (1858) дополнил ее важнейшим положением (любая клетка происходит из клетки).

    Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют сходное строение. Позже эти выводы стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетках: вне клеток нет жизни.

    Дополнительные положения клеточной теории

    История

    XVII века

    1665 — английский физик Р. Гук в работе «микрография» описывает строение пробки, на тонких срезах которого он нашел правильно расположены пустоты. Эти пустоты Гук назвал «ячейками, или клетками». Наличие такой структуры было известно ему и в некоторых других частях растений.

    1670-е годы — итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в различных органах растений «мешочки, или пузырьки» и показали широкое распространение в растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопистов А. Левенгук. Он же первым открыл мир одноклеточных организмов — описал бактерий и простейших (инфузорий).

    Исследователи XVII века, показали распространенность «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки как пустоты в непрерывной массе растительных тканей.

    Грю рассматривал стенки клеток как волокна, поэтому он ввел термин «ткань», по аналогии с текстильной тканью.

    Исследование микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточное строение.

    XIX века

    В первой четверти XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

    Ссылка и Молднхоуер устанавливают наличие в растительных клеток самостоятельных стенок. Выясняется, что клетка является определенной морфологически обособленной структурой. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточных структуры растений, как водоносные трубки, развиваются из клеток.

    Мейен в «фитотомию» (1830) описывает растительные клетки, которые “бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы “. Мейен подчеркивает самостоятельность обмена веществ каждой клетки.

    В 1831 году Роберт Броун описывает ядро ​​и высказывает предположение, что оно является постоянной составной частью растительной клетки.

    Школа Пуркинье

    В 1801 году Вигиа ввел понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связан прежде всего с исследованиями Пуркинье, основавший в Бреславле свою школу.

    Читайте также:  Водоросли: общая характеристика - биология

    Пуркинье и его ученики (особенно следует выделить Г. Валентина) описали в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека).

    Пуркинье и Валентин сравнивали отдельные клетки растений с микроскопическими тканевыми структурами животных, Пуркинье чаще называл «зернышками» (для некоторых животных структур в его школе применялся термин «клетка»).

    В 1837 г.. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желез, нервной системы и т. Д. В таблице, прилагаемой к его докладе, были приведены четкие изображения некоторых клеток тканей животных. Тем не менее установить гомологи клеток растений и животных клеток Пуркинье не смог:

    • Во-первых, под зернышками он понимал то клетки, то клеточные ядра;
    • Во-вторых, термин «клетка» тогда понимал буквально как «пространство, ограниченное стенками».

    Сопоставление клеток растений и «зернышек» животных Пуркинье вел в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном понимании).

    Школа Мюллера и работа Шванном

    Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды) его ученик Фридрих Генле опубликовал исследование о кишечный эпителий, в котором дал описание различных его видов и их клеточного строения.

    Здесь были выполнены классические исследования Шванн, которые заложили основу клеточной теории. На работу Шванном значительно повлияла школа Пуркинье и Генле.

    Шванн нашел правильный принцип сравнения клеток растений и элементарных микроскопических структур животных.

    Он смог установить гомологи и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

    На значение ядра в клетке Шванном натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории.

    Основная идея клеточной теории — соответствие клеток растений и элементарных структур животных — была чужда Шлейдена.

    Он сформулировал теорию новообразования клеток с бесструктурной вещества, согласно которой сначала с мелкой зернистости конденсируется ядрышко, вокруг него образуется ядро, которое является образователями клетки (цитобластом). Однако эта теория опиралась на неверные факты.

    В 1838 году Шванн публикует 3 предыдущих сообщения, а в 1839 году появляется его классическое произведение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом названии которого выражена основная мысль клеточной теории:

    • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры — клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма — это тоже клетки, вполне сопоставимы с клетками хряща и хорды.
    • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
    • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванном оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванном была высказана им, вслед за Шлейденом, мысль о возможности возникновения клеток с бесструктурной неклеточного вещества.

    Развитие клеточной теории во второй половине XIX века

    С 1840-х годов учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.

    Для дальнейшего развития клеточной теории существенное значение имело ее распространение на простейших, которые были признаны свободно живущими клетками (Сибольд, 1848).

    В это время меняется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Цезарь), что нашло свое выражение в определении клетки, данном М. Шульце в 1861 г .:

    « Клетка — это комочек протоплазмы с ядром. »

    В 1861 году Брюкке выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет дальше развитую Шлейденом и Шванном теорию клитиноутворення с бесструктурной вещества (цитобластемы).

    Выявлено, что способом образования новых клеток является клеточное деление, которое впервые было изучено на нитчатых водорослях. В опровержение теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и М.

    И. Желе.

    Разделение тканевых клеток у животных было открыто в 1841 г.. Ремарком. Выяснилось, что дробление бластомеров собой серию последовательных делений (Биштюф, Н. А. Келликер). Идея об общем распространения клеточного деления как способа образования новых клеток закрепляется Р.Вирхова в виде афоризма:

    «Omnis cellula ex cellula». Каждая клетка из клетки.

    В развитии клеточной теории в XIX веке остро стоят противоречия, отражающие двойственный характер учения о клетке, что развивалось в рамках механистического представления о природе. Уже в Шванном встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «целлюлярной патологии» Вирхова (1858).

    Работы Вирхова оказали неоднозначное влияние на развитие учения о клетке:

    • Клеточная теория распространялась им на область патологии, способствовало признанию универсальности учения о клетке. Труда Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванном, привлекли внимание к протоплазмы и ядра, признанными существенными частями клетки.
    • Вирхов направил развитие клеточной теории путем чисто механистического трактовки организма.
    • Вирхов сводил клетки в степень самостоятельных существ, в результате чего организм рассматривался не как целое, а просто как сумма клеток.

    XX века

    Клеточная теория со второй половины XIX века приобретала все более метафизический характер, усиленный «целлюлярного физиологией» Ферворна, что рассматривал любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток.

    В завершение этой линии развития клеточной теории появилась Механистическая теория «клеточной государства», сторонником которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки — с гражданами.

    Подобная теория противоречила принципу целостности организма.

    Механистический направление в развитии клеточной теории подвергся острой критике. В 1860 году с критикой представлений Вирхова о клетке выступил И. М. Сеченов.

    Позже клеточная теория испытывала критических оценок со стороны других авторов. Наиболее серьезные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвич (1904), М. Гейденгайном (1907), Добелла (1911).

    С большой критикой учения о клетке выступил чешский гистолог Студничка (1929, 1934).

    В 1950-е советский биолог О.Б.Лепешинская, основываясь на данных своих исследований, выяснили «новую клеточную теорию» в противовес «вирховианстве».

    В ее основу было положено представление, что в онтогенезе клетки могут развиваться по какой неклеточного живого вещества. Критическая проверка фактов, положенных О. Б.

    Лепешинской и ее сторонниками в основу выдвинутой ею теории, не подтвердила данных о развитии клеточных ядер по безъядерной «живого вещества».

    Современная клеточная теория

    Современная клеточная теория исходит из того, что клетка является главной формой существования жизни, присуща всем живым организмам, кроме вирусов. Совершенствование клеточной структуры было главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалась в большинстве современных организмов.

    Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

    • Клеточная структура является главной, но не единственной формой существования жизни. Неклеточный формой жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.д.) они проявляют только внутри клеток, вне клеток вирус является сложной химическим веществом.
    • Выяснилось, что существует два типа клеток — прокариотические (клетки бактерий и архей), не имеющих очищенного мембранами ядра, и эукариотические (клетки растений, животных, грибов и простейших), имеющих ядро, окруженное двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует много других различий. В большинстве прокариот нет внутренних мембранных органоидов (органелл), а в большинстве эукариот являются митохондрии и хлоропласты. Согласно симбиогенез, эти полуавтономные органеллы — потомки бактериальных клеток. Таким образом, эукариотической клетки — система более высокого уровня организации, она не может считаться вполне гомологичной клетке бактерий (клетка бактерий гомологична митохондрии клетки человека). Гомология всех клеток, таким образом, сводится к наличию в них замкнутой внешней мембраны из двойного слоя фосфолипидов (в архей она имеет другой химический состав, чем у остальных групп организмов), рибосом и хромосом — наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, что подтверждается общностью их химического состава.
    • Клеточная теория рассматривала организм как сумму клеток, а черты организма открывала в сумме рис составляющих его клеток. Этим игнорировалась целостность организма, закономерности функционирования целого заменялись суммой функ частей.
    • Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. На самом деле, в организме кроме клеток есть многоядерные надклеточном структуры (синцитии, симпласты). Установить специфичность их функционирования и значение для организма является одной из задач современной цитологии.

    Целостность организма есть результат природных взаимосвязей.

    Клетки многоклеточного организма не является индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы).

    К самостоятельному существованию способны, как правило, только те клетки многоклеточных организмов, которые дают начало новым особям (гаметы, зиготы, или споры) и могут рассматриваться как отдельные организмы.

    Очищенная от механицизма и дополнена новыми данными клеточная теория остается одним из важнейших биологических обобщений.

    Ссылка на основную публикацию
    Для любых предложений по сайту: [email protected]