Биосфера существует на Земле с тех пор, как начала появляться жизнь. Она включает в себя: воду, верхнюю часть земной коры и нижние слои атмосферы. Биосфера играет важную роль для всех организмов. Но из чего она состоит, и какие у нее особенности?
Биосфера – это область, в которой находятся все живые организмы на планете Земля. Вода практически полностью наполнена ими, а в земной коре разные существа встречаются даже на глубине до 7 км. Атмосфера заселена до озонового слоя, дальше солнечные лучи и низкая температура убивают все живое.
Интересный факт: ученые находили микробы в стратосфере, в 25-40 км над поверхностью планеты, однако здесь они пребывали в состоянии анабиоза и не вели какой-либо деятельности.
Где находится, границы
Границы биосферы
Верхняя граница биосферы проходит в атмосфере, на высоте в 15-20 км от поверхности. Далее заканчивается озоновый слой, а за его пределами жизнь погибает от солнечной активности.
Нижняя граница находится в земной коре (литосфере), проходит на глубине 3,5-7,5 км. Такой диапазон обусловлен тем, что температура планеты доходит до 100 градусов Цельсия на разных глубинах.
При ней начинается свертывание белков, и существование жизни практически невозможно.
Однако организмы обычно не распространяются глубже нескольких метров, так как дальше им не хватает питательных веществ, света, а горные породы препятствуют продвижению.
Интересный факт: нижняя граница в воде (гидросфере) проходит на глубине 10-11 км, в Марианской впадине. Это самое глубокое место на дне Мирового океана.
Для обозначения области между верхней и нижней границами, используется понятие “эубиосфера”. Это пространство, в котором проживает большая часть живых существ на планете Земля.
Растения – основной компонент биомассы
Биомасса – это вес всех живых организмов, проживающих в биосфере. Значение этого параметра равно примерно 2,5 x 1012 тонн. На сушу приходится больший процент всех организмов: биомасса океана составляет только 0,003 x 1012 тонн.
Данный параметр у растений в 500-1000 раз больше, чем у животных. Их масса равна 560 млрд тонн, а у зверей – лишь 5 млрд. Биомасса людей составляет 350 млн тонн, муравьи весят 3 млрд, морские рыбы 800-2000 млн., а планктон и водоросли, находящиеся в океане, 7 млрд. тонн.
Небольшое количество организмов живет в суровых условиях на территории пустынь и во льдах. Их биомасса очень мала, что обусловлено недостатком питательных веществ, кислородом.
Основные компоненты
Биосфера обладает определенной структурой, благодаря которой ученым гораздо легче изучать ее:
- Живое вещество – все организмы, существующие на Земле. Их масса примерно равна 3,6 трлн тонн. Они не только населяют, но и преобразуют облик планеты, влияя на нее.
- Биогенное вещество – результат жизнедеятельности организмов. Они постоянно поглощают и перерабатывают воду, воздух и минеральные вещества. То, что образуется в итоге, может не входить в состав организмов (уголь, торф, нефть).
- Косное вещество – все ,что образуется без участия живого (горные породы, вода).
- Биокосное вещество – все, что перерабатывают организмы горных и осадочных пород (почва, ил).
- Вещество космического происхождения.
Интересно: Планета Земля – коротко, видео
В совокупности компоненты представляют собой биосферу. Причем все они взаимосвязаны и непрерывно взаимодействуют друг с другом.
Биосфера разделена на три уровня, обладающих определенными особенностями. Также их называют оболочками.
Атмосфера
Фото атмосферы из космоса
Атмосфера – область над поверхностью планеты. Через нее Земля из космоса получает необходимые газы: водород и гелий. Она полностью пронизывается радиацией от Солнца, которое нагревает планету, способствует распаду молекул и ионизации атомов.
Атмосферу можно разделить на различные слои:
- тропосфера (0-10 км);
- стратосфера (10-47 км);
- мезосфера (47-80 км);
- термосфера (80-1000 км);
- экзосфера (от 1000 км), газы рассеиваются в космическое пространство.
В состав атмосферы входят: азот 78,8%, кислород 20,9%, аргон 0,93%, углекислый газ 0,03%. Также в ней присутствуют неон, гелий, метан, водород, водяной пар и озон.
Температура, давление и плотность атмосферы постоянно меняются в зависимости от времени года и суток, расположения. Например, масса водяного пара в разных местах будет отличаться: в тропиках 3%, в Антарктиде 0,00002 %.
Интересный факт: озоновый слой – один из важнейших компонентов в атмосфере. Он находится на высоте в 20-25 км и защищает планету от радиации Солнца.
Гидросфера
Гидросфера составляет большую часть поверхности планеты
Гидросфера – это водная оболочка Земли. Жидкость присутствует повсюду: в виде пара находится в атмосфере, в естественном состоянии просачивается сквозь землю, а также составляет основу Мирового океана.
Интересный факт: В воде растворяется множество веществ, и их концентрация может доходить до 50 мг/л, а в море до 35 г/л.
Морская вода содержит в себе такие элементы, как: кислород, водород, хлор, натрий, магний, кальций, калий, бром и сера. Также в разном количестве в ней присутствуют и другие вещества.
Фактически, в некоторых водоемах может находиться большая часть химических элементов, и все они будут влиять на местные организмы.
Вода также оказывает воздействие на человека, природу, климат, более того, именно в ней зародилась жизнь.
Мировой океан составляет 94% всех вод на планете. Поэтому большая часть подводных организмов проживает именно в нем. В морской воде много растворенных газов, например углекислого больше, чем в атмосфере, в 100 раз. А кислорода наоборот, в 100 раз меньше.
Интересно: Как сохранились кости динозавров? Описание, схема, видео
Вода активно поглощает тепло от Солнца, не давая температуре на Земле подниматься критически высоко. Поверхность океана в районе экватора нагревается, образует теплые течения и уносит жидкость в полярные области. Обратно же она возвращается охлажденной. А за счет испарений образуется круговорот воды в природе, что влияет на климат.
Литосфера
Фото каньона как пример литосферы
Литосфера – это земля, почва, полезные ископаемые – всё, что находится в твердом веществе на поверхности планеты. В её химический состав входят алюминий, железо, кальций, магний, натрий, калий.
Организмы проникают в почву на глубину до 3 км, дальше им не хватает ни воздуха, ни питательных веществ для того, чтобы выжить. Камни и горные породы препятствуют проходу животных и растений.
Почва включает в себя твердые, жидкие и газообразные элементы, ей присуща живая и неживая природа. Она – результат выветривания горных пород и взаимодействия климата, растений, животных. Самый плодородный – верхний слой (гумус), содержит продукты перегнивания органики, имеет глубину в 10-15 см.
Выделяют три основных элемента почвы:
- твердая часть – это органическое вещество, состоящее из растительного, животного и микробного происхождения;
- жидкая часть – почвенный раствор, в нем находятся элементы питания, необходимые для роста растений: ионы, молекулы, коллоиды;
- газообразная часть – это воздух, который заполняет поры, в его состав входят азот, озон, углекислый газ и множество других элементов в зависимости от места, окружающих условий.
В верхних слоях живых существ больше, чем в нижних. Почва – это среда обитания микроорганизмов, формирующих ее плодородие. Они способны разрушать все природные и органические соединения, участвуя в процессе почвообразования. Также микроорганизмы очищают окружающую среду от загрязнений.
Круговорот веществ в биосфере
Химические элементы, атомы – все находится в бесконечном круговороте веществ. Они перегруппировываются и преобразуются постоянно, их запас не исчезает и распределяется между видами.
Большой круговорот элементов длится сотни лет, превращает камни в песок, медленно движутся плиты материков.
Малый круговорот происходит на уровне экосистем. Питательные вещества перемещаются из одной среды в другую: тела животных разлагаются, питая почву, становятся растениями, которые едят другие животные.
Биогеохимический цикл – это круговорот неорганических химических веществ в органическую среду. Например, процесс фотосинтеза.
Очень важными для биосферы являются круговороты таких веществ, как углерод, кислород, азот, фосфор, сера. Они являются компонентами всего живого, участвуют в образовании белка, в процессах фотосинтеза.
История развития
Развитие биосферы можно отследить по живому и биокостному веществам. Земля образовалась примерно 4,5 млрд лет назад. Долгое время она формировалась и приобретала вид, отдаленно напоминающий современный. Жизнь на ней зародилась 3,5 млрд лет назад, в воде. Таков возраст древнейших останков, найденных учеными. Первыми живыми организмами на Земле стали одноклеточные.
Интересно: Правда ли, что в центре звезд и планет невесомость? Фото и видео
С тех пор планета активно менялась, и биосфера также претерпевала соответствующие преобразования, пока не приобрела современный вид.
Сейчас она продолжает меняться, причем нередко человек создает условия для этого. Люди пытаются увеличивать количество определенных живых существ с целью сохранения вида.
Но иногда их деятельность приводит к резкому сокращению биосферы. Например, при сливе химических отходов в океан.
С полетами на Луну для человечества открылась эра космонавтики, все фантастические рассказы о жизни на других планетах стали планами. Но чтобы появилась возможность заселить другое небесное тело, требуется создать на нем все условия для образования биосферы.
В этом поможет терраформирование. Это процесс создания искусственной биосферы на других планетах. Пока это только теория, не увенчавшаяся успехом в реальных условиях. Сейчас ученые лишь строят теории о том, как воссоздать условия для жизни на целой планете.
Интересный факт: терраформирование часто встречается в научной фантастике, когда развитые цивилизации создают колонии на необитаемых планетах.
Механизмы устойчивости
Грибы – наиболее распространенные представители гетеротрофов
Биосфера – саморегулирующаяся система, для нее характерна организованность (гомеостаз). Это значит, что при, слишком большой солнечной активности все живое не погибнет, а выработает механизмы сопротивления, приводящие систему в равновесие.
Живые организмы делятся на автотрофов и гетеротрофов. Первые производят органическое вещество, а вторые его потребляют и разрушают. Эти процессы должны быть в равновесии, и важнейшим их элементом является биоразнообразие, которое гарантирует замену одних элементов другими в случаях непредвиденных ситуаций, катаклизмов.
Факторы, определяющие устойчивость
Наличие организмов, обеспечивающих круговорот веществ в системе, это важнейший фактор устойчивости. Без них углерод, который необходим для образования всего живого, быстро бы исчерпал себя. Но круговорот делает процесс непрерывным.
Есть основные факторы, которые определяют устойчивость биосистемы:
- биоразнообразие – большое количество различных видов животных, растений, микроорганизмов;
- взаимозаменяемость компонентов: одни виды могут заменить другие в случае их исчезновения или из-за других непредвиденных обстоятельств;
- дублирование, когда разные организмы выполняют одну и ту же функцию;
- жизненная активность: организмы довольно быстро размножаются и распространяются при необходимости.
На экваторе наблюдается самое большое разнообразие видов, следовательно здесь экосистема находится в большем равновесии.
Биосфера пребывает в непрерывном движении. Людям необходимо охранять виды, которые вымирают, и не допускать слишком больших изменений, ведь они способны пошатнуть всю систему в целом.
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Биосфера
Содержание:
Биосфера и ее границы
Биосфера — это оболочка Земли, состав, структура и энергетика которой определяются прошлой и современной деятельностью живых организмов.
■ Термин «биосфера» ввел Э. Зюсс (Австрия, 1875 г.), учение о биосфере было создано В.И. Вернадским (Россия, 1926 г.).
■ Биосфера — наиболее крупная экосистема, объединяющая все биогеоценозы планеты и осуществляющая глобальный круговорот веществ.
Компоненты биосферы: живое вещество (см. ниже), биогенное вещество, биокосное вещество, косное вещество, радиоактивное вещество, космогенное вещество.
Биогенное вещество — соединения и полезные ископаемые, создаваемые и перерабатываемые живыми организмами в процессе их жизнедеятельности (нефть, газ, уголь, известняк и др.).
Биокосное вещество — вещество, образующееся в результате совместной деятельности живых организмов и абиогенных процессов (почва, грунт водоемов).
Косное вещество — соединения, образующиеся без участия живых организмов (горные породы, минералы и др.).
- Радиоактивное вещество — радиоактивные руды и конечные продукты их распада.
- Космогенное вещество — метеориты, космическая пыль.
- Область жизни определяется наличием условий, необходимых для существования тех или иных живых организмов.
Жизнь на Земле распространена в трех геологических оболочках — атмосфере, гидросфере и литосфере. Эти оболочки объединены в единую целостную систему посредством непрерывного обмена друг с другом веществом и энергией, обусловленного не только абиогенными процессами, но и деятельностью живых организмов.
Атмосфера — воздушная оболочка Земли. Плотность воздуха быстро уменьшается с высотой: 75% массы атмосферы сосредоточено в слое ниже 10 км, 90% — ниже 15 км, 99% — ниже 30 км. Сухой воздух состоит из азота (78,08%), кислорода (20,95%), аргона (0,93%), углекислого газа (0,03%) и примесей других газов.
Тропосфера — нижний слой атмосферы высотой от 8-10 км в полярных широтах до 16-18 км в экваториальной зоне. Выше тропосферы расположена стратосфера.
Озоновый слой — область с повышенным содержанием озона О3 — находится в стратосфере на высотах 15-25 км. Он поглощает губительное для живых организмов коротковолновое ультрафиолетовое излучение Солнца.
- Водяной пар, присутствующий в атмосфере, участвует в природном круговороте воды;
- ■ конденсируясь, он выпадает в виде дождей, обеспечивая влажностный режим земных территорий;
- ■ вместе с СО2 он вносит главный вклад в парниковый эффект: удерживает отраженные от поверхности планеты длинноволновые тепловые лучи, благодаря чему нижние слои атмосферы оказываются теплыми.
- Гидросфера — это водная оболочка Земли, образованная водами ее океанов, морей, озер, рек, подземных и ледяных покровов.
■ Средняя глубина Мирового океана — 3,8 км, максимальная (Марианская впадина в Тихом океане) — 11,034 км. 97% массы гидросферы составляют соленые океанические воды, 2,2% — воды ледников, 0,8% — подземные, озерные и речные пресные воды.
Литосфера — внешняя твердая оболочка (кора) планеты. Состоит из трех слоев: верхнего — слоя осадочных пород, среднего -гранитного и нижнего, наиболее плотного — базальтового.
- Границы биосферы проходят там, где начинают преобладать природные факторы, делающие существование живых организмов невозможным.
- Верхняя граница биосферы определяется высокой интенсивностью ультрафиолетового солнечного излучения, низкой температурой среды, дефицитом кислорода и воды и проходит в атмосфере на высоте 25-27 км (у нижней границы озонового слоя).
- ■ Отдельные споры бактерий и грибов найдены в тропосфере на высоте до 40 км.
- Нижняя граница биосферы в литосфере для большинства форм жизни определяется высокой плотностью, прочностью и высокой сопротивляемостью среды, отсутствием света, недостатком кислорода и проходит на глубине нескольких десятков метров.
■ Неактивные формы жизни (споры, цисты) и нефтебактерии зарегистрированы на глубинах до 4 км. Эта граница, помимо перечисленных выше факторов, определяется также высокими давлением и температурой горных пород и подземных вод (на глубине 3 км температура около +100 °С).
В гидросфере жизнь простирается на всю глубину Мирового океана. Здесь ограничивающими факторами являются давление толщи воды и отсутствие света (температура воды на дне океанических впадин — около 0 °С).
■ По В.И. Вернадскому, нижняя граница биосферы проходит на 1-2 км глубже дна Мирового океана, в постепенно накапливающейся в океане толще осадочных пород, происхождение которых связано с деятельностью живых организмов.
Живое вещество
- Живое вещество — совокупность всех существующих в данный момент живых организмов планеты, численно выраженная в элементарном химическом составе, массе или энергии.
- ■ Количественные меры живого вещества — биомасса и продукция.
- Особенности живого вещества.
Живое вещество:
- ■ является главным компонентом биосферы;
- ■ распределено по Земле неравномерно; его концентрация максимальна на границах раздела основных сред — в почве, в поверхностных слоях океана, на дне водоемов, в так называемых «пленках жизни»;
- ■ по своему элементарному химическому составу близко к составу земной коры;
- ■ является наиболее активным компонентом биосферы, обеспечивающим глобальный круговорот химических элементов;
- ■ является гигантским аккумулятором и уникальным преобразователем энергии Солнца, связывая ее в химических связях сложных органических молекул в процессе фотосинтеза.
Общее количество биомассы на Земле — 2423,2 млрд. т. Основная ее часть сосредоточена на континентах (свыше 99,8%) в зеленых растениях суши (более 99,2%). Организмы, не способные к фотосинтезу, составляют 1%.
Распределение биомассы по континентальной и океанической частям биосферы (приведенное к сухому органическому веществу) представлено в таблице.
Распределение по продукции и количеству образуемого кислорода: около половины продукции и объема кислорода создают растения суши (главным образом влажные тропические леса), другую половину — микроскопические водоросли гидросферы — фитопланктон (при этом биомасса фитопланктона примерно в 10 000 раз меньше биомассы растений суши). Причина — в значительно большей скорости образования продукции фитопланктоном по сравнению с растениями суши.
Биогеохимический цикл — более или менее замкнутый путь, по которому осуществляется непрерывная циркуляция химических элементов в биосфере.
Основные процессы круговорота воды, углерода и азота приведены в таблице; подробнее они рассмотрены ниже.
Целостность биосферы: каждый ее компонент, развиваясь по своим законам, существует не изолированно, а постоянно испытывает влияние других и сам оказывает влияние на другие компоненты. Поэтому изменение любого компонента биосЛеры вызывает изменение других.
Ряд компонентов биосферы, расположенных в порядке убывания скорости изменения: животный мир → растительность → почва → вода → климат → рельеф → литосфера.
Круговорот воды и кислорода
Круговорот воды
Вода испаряется с поверхности водоемов (океанов, морей и т.д.) и суши и воздушными течениями переносится на различные расстояния.
Большая часть испарившейся воды выпадает в виде осадков в океан, меньшая — на сушу.
Выпавшая на поверхность суши вода способствует разрушению горных пород, размывает верхний слой почвы и возвращается вместе с растворенными и взвешенными в ней веществами в реки, моря и океаны.
Растения извлекают воду из почвы и испаряют ее в атмосферу. Масса испаряемой при этом воды может быть весьма значительна (гектар леса испаряет 20-50 т воды в сутки), и в крупных лесных зонах основное количество осадков образуется из водяного пара, поступающего в атмосферу благодаря суммарному испарению с этих же зон.
Растительный покров также удерживает воду путем замедления ее стока, поддерживает постоянным уровень грунтовых вод и др.
Часть воды в процессе фотосинтеза расщепляется на водород и кислород. Водород используется для синтеза органических соединений, а кислород выделяется в атмосферу.
Животные потребляют воду для поддержания осмотического давления и выделяют ее с продуктами диссимиляции.
Вода полностью разлагается и восстанавливается в биотическом круговороте примерно за 2 млн. лет.
Круговорот кислорода
Практически весь атмосферный кислород имеет биогенное происхождение. Свободный кислород используется аэробными организмами при дыхании для окисления органических соединений.
Один из конечных продуктов окисления — диоксид углерода, поступающий в атмосферу. Пополнение содержания кислорода в атмосфере происходит при разложении воды в процессе фотосинтеза.
Весь кислород атмосферы проходит через организмы примерно за 2000 лет.
Круговорот углерода и азота
Круговорот углерода в биосфере (см. рис. 5.3) обусловливают в основном процессы фотосинтеза и дыхания. Углерод в атмосфере содержится в основном в составе диоксида углерода СО2. Первичный источник СО2 — вулканическая деятельность.
Биосферный цикл углерода начинается с ассимиляции атмосферного диоксида углерода наземными и водными растениями и цианобактериями в процессе фотосинтеза.
При этом образуются углеводы, часть которых используется самими растениями для получения энергии, а часть потребляется животными.
Кроме того, соединения углерода используются морскими организмами для построения раковин и скелетных образований.
Углерод возвращается в среду в виде диоксида, выделяемого в процессе дыхания животных и растений. Второй путь возврата -разложение мертвых растений и животных, при котором углерод их тканей окисляется и в виде СО2 поступает в атмосферу.
Цикл круговорота углерода замкнут не полностью. Часть углерода на продолжительное время выводится из круговорота, концентрируясь в залежах торфа, каменного угля, нефти и горючих сланцев, образующихся при разложении мертвых организмов без доступа кислорода, а также в мощных отложениях известняков на дне морей и океанов, образованных из остатков раковин и скелетов отмерших морских организмов.
Однако при сжигании ископаемого топлива, используемого человеком для получения энергии, образуется диоксид углерода, который возвращается в атмосферу.
За счет этого за последние сто лет содержание СО2 в атмосфере возросло на 25%, что нарушает отрегулированный круговорот углерода и может привести к усилению парникового эффекта. Один цикл круговорота диоксид углерода проходит за 300 лет.
Круговорот азота
Азот — один из важнейших компонентов белков, нуклеиновых кислот, АТФ и других органических веществ. Его основные запасы содержатся в атмосфере в форме недоступного для растений молекулярного азота N2. В небольших количествах атмосферный азот связывается с кислородом в процессе грозовых разрядов в атмосфере, а затем с дождями поступает на поверхность Земли.
Связывание атмосферного азота осуществляется цианобактериями, а также клубеньковыми азотфиксирующими бактериями, поселяющимися в клетках корней бобовых растений. Они синтезируют нитриты и нитраты, усваиваемые растениями. В растениях азот используется для построения нуклеиновых кислот и белков, которые затем употребляются в пищу животными и человеком.
В процессе жизнедеятельности белковые молекулы расщепляются до конечных продуктов — воды, диоксида углерода, аммиака, мочевины и мочевой кислоты, выделяющихся во внешнюю среду. При гниении погибших животных и растений также образуется аммиак.
Большая часть образующегося аммиака преобразуется нитрифицирующими бактериями в нитриты и нитраты, усваиваемые растениями. Небольшая часть аммиака уходит в атмосферу и вместе с СО2, водяным паром и другими газообразными веществами выполняет функцию удержания тепла планеты.
Некоторые виды бактерий путем денитрификации могут восстанавливать нитриты и нитраты до газообразного азота, который поступает в атмосферу. В результате происходит обеднение почвы и воды соединениями азота и насыщение атмосферы молекулярным азотом.
Превращение энергии
Биологический круговорот веществ возможен только при постоянном притоке и преобразовании солнечной энергии, поскольку полученная от Солнца энергия связывается в органических веществах и при движении по ступеням пищевой цепи уменьшается (большая ее часть тратится на осуществление процессов жизнедеятельности организмов и рассеивается в виде тепла).
Биосфера — открытая система, постоянно получающая солнечную энергию. В процессе фотосинтеза эта энергия превращается в энергию химических связей органических веществ. Живым веществом Земли ежегодно создается 4,2 * 1017 Дж энергии.
Накопленная энергия частично расходуется растениями в процессах жизнедеятельности, а частично переходит к растительноядным организмам.
Эти организмы также используют часть энергии в процессах жизнедеятельности, а оставшаяся ее часть поступает к плотоядным животным и т.д. Таким образом, энергия запасается в тканях растений и животных в виде органических соединений.
Запас энергии в биосфере Земли оценивается в 4,2 * 1018 Дж. Часть энергии законсервирована в нефти, угле, сланцах, торфе.
Выделение энергии происходит при разрушении органических веществ в процессах дыхания, брожения и гниения. В настоящее время живым веществом Земли ежегодно выделяется 4,2 • 1017 Дж энергии — столько же, сколько и создается, т.е. в биосфере поддерживается баланс энергии.
Эволюция биосферы
Биосфера — сложная, относительно стабильная, но не застывшая, а развивающаяся, эволюционирующая экологическая система.
Доказательством и источником знаний о развитии биосферы служат ископаемые остатки древних организмов.
■ Считают, что за время существования биосферы ее населяли около 500 млн. видов организмов.
♦ Причины относительной стабильности биосферы:
■ непрерывное поступление солнечной энергии, используемой фототрофными организмами;
■ многообразие живых организмов;
■ адаптация организмов к жизни в разнообразных условиях четырех сред;
■ поддержание непрерывного биогенного круговорота веществ;
■ постепенно сложившийся в течение сотен миллионов лег баланс жизнедеятельности всего многообразия организмов -продуцентов, консументов и редуцентов.
БИОСФЕ́РА
Авторы: В. Н. Максимов
БИОСФЕ́РА (от био… и греч. σφαῖρα – шар), оболочка Земли, состав, структура и энергетика которой определяются совокупной деятельностью живых организмов. Впервые представление о Б. как «области жизни» сформулировал Ж. Б.
Ламарк, который обратил внимание на то, что практически все минер. вещества в поверхностных слоях Земли являются продуктами жизнедеятельности организмов. В 1875 Э. Зюсс выделил неск. оболочек Земли, среди которых наряду с земной корой (литосферой) и гидросферой назвал Б.
– как оболочку, в пределах которой существует жизнь. Именно так, как тонкую плёнку на земной поверхности, находящейся в данный момент в сфере жизнедеятельности организмов, понимают Б. мн. зарубежные учёные. Наиболее полно представления о Б. разработал В. И. Вернадский. Осн.
идеи он изложил в 1926 в кн. «Биосфера», а затем на протяжении всей жизни обращался к анализу связанных с этим термином понятий и закономерностей. По мнению Вернадского и его последователей, в состав Б.
следует включать не только те участки земной поверхности, в которых активно развиваются живые организмы, но и часть др. оболочек Земли, в которых обнаруживаются следы жизнедеятельности совокупности живых существ. Исходя из этого, Б.
охватывает часть атмосферы до высоты озонового слоя (20–25 км), часть литосферы (особенно кору выветривания) и всю гидросферу. Нижняя её граница опускается в ср. на 2–3 км на суше и на 1–2 км ниже дна океана.
Живое вещество и его роль в биосфере
В учении о Б. центр. место принадлежит понятию «живое вещество», под которым В. И. Вернадский понимал совокупность всех живых организмов (животных, растений, микроорганизмов), численно выраженную в их элементарном химич. составе, массе и энергии. Наиболее важная функция Б.
– регулярное воссоздание живого вещества, накапливающегося и удерживающего энергию. Все вместе взятые живые организмы почти за 2,5 млрд. лет истории Б., аккумулируя энергию Солнца и трансформируя её в земную химич.
энергию (ту свободную энергию, которая способна производить огромную работу по перераспределению вещества земной коры и созданию новых химич. соединений), представляют планетарное явление космич. масштаба.
«На земной поверхности, – писал Вернадский, – нет силы более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы взятые в целом. И чем более мы изучаем химич.
явления биосферы, тем больше убеждаемся, что на ней нет случаев, где бы они были независимы от жизни. И так длилось в течение всей геологич. истории». Б. охватывает участки земной коры, которые в течение всей геологич.
истории во все этапы эволюции жизни подвергались воздействию живого вещества. В них наряду с живым веществом и минер. веществами, в образовании которых живые организмы не принимают участия («косное вещество»), обязательно присутствуют биогенные и биокосные вещества.
К биогенным относятся, напр., известняки, угли, нефть, кислород атмосферы, которые создавались и перерабатывались живыми организмами. Биокосные компоненты Б. создаются при участии и организмов, и абиотич. факторов. Таковы почва, природные воды, тропосфера. Т. о., Б.
представляется как единая динамич. система, в которой живое вещество неотделимо от окружающей неживой (косной) среды. Идеям Вернадского созвучна популярная в 1970–90-е гг. концепция «Гайи» (англ. инженер Дж. Лавлок и амер. микробиолог Л. Маргулис, 1975), в соответствии с которой жизнь на Земле можно представить как сложную саморегулирующуюся единую систему.
В разных природных условиях Б. сформирована в виде относительно самостоят. природных комплексов – экосистем или биогеоценозов. Осн. источником энергии для всех происходящих в Б. процессов является солнечный свет. Поверхности Земли достигает всего ок.
15% солнечной радиации, поступающей в верхние слои атмосферы, и только 0,1–1% этой энергии используется автотрофными организмами (гл. обр. зелёными растениями) для создания живого вещества при участии диоксида углерода и воды (т. н. чистой первичной продукции) в процессе фотосинтеза.
Величина этой продукции оценивается в пересчёте на углерод примерно в 2,26· 1017 г в год, что соответствует ежегодному поглощению 1,15·1018 ккал (4,98·1018 кДж). Именно эта энергия, запасённая в форме химич. связей разнообразных химич.
соединений, определяет жизнедеятельность всех остальных гетеротрофных организмов, обеспечивая их пищей и энергией. Для разрушения вещества пищи, роста и размножения животные используют кислород, выделяемый также зелёными растениями.
Отмершие тела растений и животных служат пищей для микроорганизмов (организмов-деструкторов), разлагающих их до минеральных солей, диоксида углерода и воды. В свою очередь, эти простые соединения вновь используются растениями для создания органич. вещества (см. Трофическая цепь). Т. о. в Б. происходит круговорот углерода.
Его осуществление за счёт использования постоянно поступающей солнечной энергии является условием непрерывного функционирования Б. как целостной системы.
Постоянный обмен веществом и энергией между организмами и окружающей средой в ходе питания, дыхания и размножения и связанных с ними процессов создания, накопления и распада органич. вещества обеспечивает непрерывный поток атомов – биогенную миграцию, которая проявляется в форме биогеохимических циклов.
Цикл углерода неотделим от круговоротов мн. других химич. элементов. Осн. элементами, входящими в состав любого живого организма (т. н. биогенные элементы), являются кислород (70%), углерод (18%) и водород (10%). Кальций, калий, азот, фосфор, кремний, марганец, сера, хлор, железо и натрий составляют 1,5–4%, а микроэлементы (их содержание определяется тысячными долями процента и ниже) – алюминий, цинк, молибден, кобальт, иод, бром и др. – всего лишь 0,4–0,5%, хотя их роль для организмов очень важна.
Разл. организмы способны извлекать из среды обитания практически все элементы периодич. системы и избирательно накапливать некоторые из них в количествах, иногда в сотни тысяч раз превышающих их содержание в окружающей среде. Напр.
, железобактерии аккумулируют железо; фораминиферы, мн. моллюски и кишечнополостные – кальций; диатомовые водоросли, радиолярии и хвощи – кремний; губки – иод; асцидии – ванадий; фиалки и грибы – цинк, и т. д.
Содержание углерода в растениях в 200 раз, а азота – в 30 раз превышает их относит. количество в земной коре. Деятельность организмов обусловливает интенсивную миграцию атомов элементов с переменной валентностью – железа, марганца, серы, фосфора, хрома, азота.
При этом создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода и др.
Живое вещество распределено на Земле чрезвычайно неравномерно. Ок. 99% представлено растениями на суше; животные и др. организмы составляют менее 1% живого вещества. Масса фотосинтезирующих организмов в Мировом ок.
примерно в 10000 раз меньше, чем на континентах. При этом скорость оборота биомассы в толще воды в 1000–2000 раз выше, чем растений – на суше. Поэтому биомасса гетеротрофов в океанах в 10–15 раз больше биомассы фитопланктона.
Тем не менее, благодаря огромной разнице в массе растит. организмов на суше и в океане, первичная биологич. продукция на континентах, занимающих всего 1/4 поверхности Земли, составляет не менее 50% (по некоторым оценкам – до 60%) всей первичной продукции Б.
Биомасса всей Б. оценивается в 1,8·1018 г (в пересчёте на сухое вещество).
В. И. Вернадский предложил различать два типа скоплений живого вещества в биосфере – плёнки и сгущения жизни. Плёнки жизни охватывают большие пространства, как, напр., планктон, осн. масса которого занимает сравнительно тонкий, но распространяющийся по всей поверхности Мирового ок. слой.
Такой же плёнкой можно считать и бентос – совокупность организмов, обитающих на дне водоёмов. На суше одна плёнка жизни может быть представлена, напр., совокупностью организмов, обитающих в условиях с высокой степенью освещённости. Сгущения жизни связаны с наземной растительностью (дождевые тропич.
леса, поймы рек) и мелководьями. Так, в прибрежных районах морей, где благодаря малым глубинам солнечный свет достигает дна, развивается мощный пояс водорослей-макрофитов.
В этих прибрежных зарослях, называемых иногда морскими лесами, сочетание высокой освещённости с высоким содержанием элементов минер. питания обеспечивает образование первичной продукции в количествах, сопоставимых с наиболее продуктивными экосистемами суши.
Особый случай прибрежных сгущений представляют коралловые рифы. В таких сгущениях достигаются макс. значения первичной продукции и, благодаря этому, обеспечивается наибольшее видовое богатство животного населения.
Одним из самых мощных аккумуляторов живого вещества является почва, особенно её плодородный гумусовый горизонт. Для неё характерно обилие организмов, высокая плотность населения (масса животных в почве намного больше, чем на её поверхности).
Наиболее интенсивно биогеохимич. процессы идут в сгущениях жизни. В то же время в каждой конкретной экосистеме биологич. активность совокупностей организмов зависит от самых разных факторов.
На суше она обусловлена в первую очередь сезонными колебаниями температуры, количеством осадков; в водных экосистемах, кроме света и тепла, важнейшее, часто решающее значение имеют гидрологич. особенности водоёма, от которых, в частности, зависит обеспеченность автотрофных организмов биогенными элементами.
Распределение жизни на планете определяется прежде всего количеством поступающей на поверхность Земли солнечной энергии.
Практически весь кислород и азот атмосферы, диоксид углерода и многие др. природные газы являются производными живого вещества. Весь диоксид углерода атмосферы проходит через фотосинтез растений примерно за 200 лет; в течение одного года жизни живые организмы перемещают (в разной форме) в неск.
раз больше газов, чем их содержится в атмосфере. Благодаря деятельности фотосинтезирующих организмов ок. 2 млрд. лет назад началось накопление в атмосфере свободного кислорода, затем образовался озоновый экран; фотосинтез зелёных растений и дыхание аэробных организмов поддерживают совр.
газовый состав атмосферы.
Человек и биосфера
Человек как биологич. вид занимает довольно скромное место в Б. Суммарная биомасса людей на Земле сравнима с биомассой дождевых червей в почвах планеты, а количество потребляемой ими растит. пищи составляет не более 1–2% от чистой первичной продукции Б. Но с того времени, когда люди перешли от собирательства и охоты к с.
х-ву как осн. способу производства пищи, воздействие человека на природу приобрело глобальный масштаб и привело к существенному изменению облика Б. По некоторым расчётам, биомасса человечества (собственно человека как вида, с культивируемыми растениями и разводимыми животными) в сер. 20 в.
превысила на суше биомассу природных экосистем. На суше появился новый тип экосистем – агроэкосистемы. Площадь распаханных земель на Земле составляет не менее 10% от всей территории суши. В результате расширения с.-х. угодий площадь лесов уже сократилась более чем на 50% и продолжает сокращаться на 0,3–1% в год.
Кроме того, сведе́ние лесов сопровождается снижением уровня подпочвенных вод, увеличивает вероятность засух. Распашка степей привела к разрушению структуры почв и к возникновению эрозии; это послужило причиной опустынивания огромных территорий в Сев. Америке, Африке и Азии. Развитие пром-сти, транспорта, рост городов и др.
виды человеческой деятельности требуют затрат энергии, превышающих в 15–20 раз её количество, получаемое в виде пищи. Поскольку осн. источником этой дополнит.
энергии до сих пор остаётся ископаемое топливо, количество диоксида углерода, выбрасываемое в атмосферу при сжигании нефти, угля и природного газа, примерно во столько же раз должно быть больше того, что выделяет всё человечество в процессе дыхания.
Это также отражается на изменении глобального цикла углерода и прежде всего на увеличении содержания диоксида углерода в атмосфере. Т. к. диоксид углерода относится к числу т. н. парниковых газов, повышение его концентрации может быть причиной изменения климата Земли в результате разогрева атмосферы.
Антропогенные воздействия на Б., принявшие глобальный характер, ставят под угрозу возможность поддержания гомеостаза природных систем. В связи с этим учение о Б. как единой, определённым образом организованной динамич.
системе приобретает исключительно важное значение для всего человечества (см. «Человек и биосфера»). Оно оказывает огромное влияние на развитие мн.
наук, на характер мышления и подходов при решении всех сложнейших вопросов, связанных с взаимоотношением природы и общества. В. И. Вернадский развил представление о переходе Б.
в ноосферу, в такое состояние, при котором её развитие будет управляться человеческим разумом. См. также Загрязнение окружающей среды, Охрана окружающей среды.
В географич. науках понятие «Б.» традиционно использовалось для обозначения одной из геосфер, входящих в состав географической оболочки.