Устойчивость экосистем, Биология

Автор статьи – Л.В. Окольнова.

Устойчивость экосистем, Биология

Устойчивость экосистемы не постоянна. Со временем все меняется – там, где были реки и леса, появляются пустыни.

  • Однако, в течение определенного и достаточно длительного времени экосистема устойчива и у этой устойчивости есть определенные критерии.
  • Критерий №1
  • Поток энергии и круговорот веществ.
  • Устойчивость экосистем, Биология
    Устойчивость экосистем, Биология

Откуда берется энергия? Растения (продуценты) получают солнечную энергию и неорганические вещества, превращают это в энергию соединений – органических веществ.

Дальше по известной схеме трофических сетей органические вещества переходят с одного уровня на другой и поступают к редуцентам.

Задача редуцентов – вернуть элементы соединений в окружающую среду – органические вещества перерабатываются в неорганические.

Устойчивость экосистем, Биология

Критерий №2

Видовое разнообразие.

Чем больше видов на каждом трофическом уровне, тем выше устойчивость. Логика здесь очень простая – если исчезнет какой-то один вид, то от этого исчезновения не должен зависеть трофический уровень – кто-то встанет на его место.

Устойчивость экосистем, Биология

Критерий №3

Саморегуляция.

Самый загадочный критерий. Как организм залечивает раны, так и экосистема способная восстанавливаться. Природные катаклизмы, естественные процессы и человек могут серьезно повлиять на устойчивость – животные могут мигрировать, погибать, пищевые связи “трещат” по швам”, но проходит время и система самовосстанавливается.

Устойчивость экосистем, Биология

И все же экосистемы вечными не бывают.

Устойчивость экосистем, Биология

  1. Давайте рассмотрим примеры смен экосистем (кстати, в ЕГЭ эти вопросы встречаются в части С).
  2. Каменистая экосистема -> лесной массив
  3. Абиотические разрушающие факторы: свет, выветривание, влажность;
    Биотические разрушающие факторы: бактерии, лишайники, водоросли, грибы;
  4. Создаются органические вещества, которые способствуют образованию почвы.
  5. Первыми ее заселят неприхотливые организмы – лишайники ( это вообще “пионеры” экосистем) и мхи.
  6. Затем появятся травянистые формы, потом кустарники и затем уже деревья.

Устойчивость экосистем, Биология

Сукцессия водоема

Водоем зарастает зелеными водорослями. Образуется “ковер”, другим растениям и животным не хватает кислорода и постепенно водоем заболачивается. Но, появляются организмы.

приспособленные к такой среде. Появляется все больше травы, потом появляются кустарники – появляется мокрый луг, где свободно могут прорастать ягоды, грибы, обитать птицы.

Еще несколько лет, и на месте водоема появляется лес.

Устойчивость экосистем, Биология
Устойчивость экосистем, Биология

Экосистема и ее факторы

Экосистема (греч. oikos – жилище) – единый природный комплекс, образованный живыми организмами и средой их обитания, находящихся в закономерной взаимосвязи друг с другом и образующих систему.

Вы можете встретить синоним понятия экосистема – биогеоценоз (греч. bios – жизнь + geo – земля + koinos – общий). Следует разделять биогеоценоз и биоценоз. В понятие биоценоз не входит компонент окружающей среды, биоценоз – совокупность исключительно живых организмов со связями между ними.

Совокупность биогеоценозов образует живую оболочку Земли – биосферу.

Устойчивость экосистем, Биология

Продуценты, консументы и редуценты

Организмы, населяющие биогеоценоз, по своим функциям разделены на:

  • Продуцентов
  • Растения, преобразующие энергию солнечного света в энергию химических связей. Создают органические вещества, потребляемые животными.

  • Консументы
  • Животные – потребители готового органического вещества. Встречаются консументы I порядка – растительноядные организмы, консументы II, III и т.д. порядка – хищники.

  • Редуценты
  • Это сапротрофы (греч. sapros – гнилой + trophos – питание) – грибы и бактерии, а также некоторые растения, которые разлагают останки мертвых организмов. Редуценты обеспечивают круговорот веществ, они преобразуют накопленные организмами органические вещества в неорганические.

Устойчивость экосистем, Биология

Продуценты, консументы и редуценты образуют в экосистеме так называемые трофические уровни (греч. trophos – питание), которые тесно взаимосвязаны между собой переносом питательных веществ и энергии – процессом, который необходим для круговорота веществ, рождения новой жизни.

Пищевые цепи

Взаимоотношения между организмами разных трофических уровней отражаются в пищевых цепочках (трофических цепях), в которых каждое предыдущее звено служит пищей для последующего звена. Поток энергии и веществ идет однонаправленно: продуценты → консументы → редуценты.

Устойчивость экосистем, Биология

Трофические цепи бывают двух типов:

  • Пастбищные – начинаются с продуцентов (растений), производителей органического вещества
  • Детритные (лат. detritus – истертый) – начинаются с органических веществ отмерших растений и животных

Устойчивость экосистем, Биология

В естественных сообществах пищевые цепи часто переплетаются, в результате чего образуются пищевые сети. Это связано с тем, что один и тот же организм может быть пищей для нескольких разных видов. Например, филины охотятся на полевок, лесных мышей, летучих мышей, некоторых птиц, змей, зайцев.

Экосистемы обладают важным свойством – устойчивостью, которая противостоит колебаниям внешних факторов среды и помогает сохранить экосистему и ее отдельные компоненты. Устойчивость экосистемы обусловлена:

  • Большим разнообразием обитающих видов
  • Длинными пищевыми цепочками
  • Разветвленностью пищевых цепочек, образующих пищевую сеть
  • Наличием форм взаимоотношений между организмами (симбиоз)

Устойчивость экосистем, Биология

Экологическая пирамида

Экологическая пирамида представляет собой графическую модель отражения числа особей (пирамида чисел), количества их биомассы (пирамида биомасс), заключенной в них энергии (пирамида энергии) для каждого уровня и указывающая на снижение всех показателей с повышением трофического уровня.

Существует правило 10%, которое вы можете встретить в задачах по экологии. Оно гласит, что на каждый последующий уровень экологической пирамиды переходит лишь 10% энергии (массы), остальное рассеивается в виде тепла.

Представим следующую пищевую цепочку: фитопланктон → зоопланктон → растительноядные рыбы → рыбы-хищники → дельфин. В соответствии с изученным правилом, чтобы дельфин набрал 1кг массы нужно 10 кг рыб хищников, 100 кг растительноядных рыб, 1000 кг зоопланктона и 10000 кг фитопланктона.

Устойчивость экосистем, Биология

Агроценоз

Агроценоз – искусственно созданный биоценоз. Между агроценозом и биоценозом существует ряд важных отличий. Агроценоз характеризуется:

  • Преобладает искусственный отбор – выживают особи с полезными для человека признаками и свойствами
  • Источник энергии – солнце (открытая система)
  • Круговорот веществ – незамкнутый, так как часть веществ и энергии изымается человеком (сбор урожая)
  • Видовой состав – скудный, преобладают 1-2 вида (поле пшеницы, ржи)
  • Устойчивость экосистемы – снижена, так как пищевые цепочки короткие, пищевые сети неразветвленные
  • Биомассы на единицу площади – мало

Устойчивость экосистем, Биология

Биоценоз характеризуется:

  • Преобладает естественный отбор – выживают наиболее приспособленные особи
  • Источник энергии – солнце (открытая система)
  • Круговорот веществ – замкнутый
  • Видовой состав – разнообразный, тысячи видов
  • Устойчивость экосистемы – высокая, так как пищевые цепочки длинные, разветвленные
  • Биомассы на единицу площади – много

Устойчивость экосистем, Биология

Факторы экосистемы

Любой организм в экосистеме находится под влиянием определенных факторов, называемых экологическими факторами. Они подразделяются на абиотические, биотические и антропогенные.

  • Абиотические (греч. α — отрицание + βίος — жизнь)
  • К абиотическим факторам относятся факторы неживой природы. Существуют физические – климат, рельеф, химические – состав воды, почвы, воздуха. В понятие климата можно включить такие важные факторы как освещенность, температура, влажность. Устойчивость экосистем, Биология

  • Биотические (греч. βίος — жизнь)
  • К биотическим факторам относятся все живые существа и продукты их жизнедеятельности. Например: хищники регулируют численность своих жертв, животные-опылители влияют на цветковые растения и т.д. Это и самые разнообразные формы взаимоотношений между животными (нейтрализм, комменсализм, симбиоз). Устойчивость экосистем, Биология

  • Антропогенные (греч. anthropos — человек)
  • К антропогенным факторам относится влияние человека на окружающую среду в процессе хозяйственной и другой деятельности. Человек “разумный” (Homo “sapiens”) вырубает леса, осушает болота, распахивает земли – уничтожает дом для сотен видов животных. В результате деятельности человека произошли глобальные изменения: над Антарктикой появились “озоновые дыры”, ускорилось глобальное потепление, которое ведет к таянию ледников и повышению уровня мирового океана.

За миллионы лет эволюции растения и животные вырабатывают приспособления к тем условиям среды, где они обитают. Так у алоэ, растения живущего в засушливом климате, имеются толстые мясистые листья с большим запасом воды на случай засухи. У каждого организма вырабатывается своя адаптация.

Формируются привычные биологические ритмы (биоритмы): организм адаптируется к изменениям освещенности, температуры, магнитного поля и т.д. Эти факторы играют важную роль в таких событиях как сезонные перелеты птиц, осенний листопад.

Если адаптация не вырабатывается, или это происходит слишком медленно по сравнению с другими видами, то данный вид подвергается биологическому регрессу: количество особей и ареал их обитания уменьшаются и со временем вид исчезает. Иногда деятельность человека играет решающий фактор в исчезновении видов.

Закон оптимума

Если фактор оказывает на жизнедеятельность организма благоприятное влияние (отлично подходит для животного/растения), то про фактор говорят – оптимальный, значение фактора в зоне оптимума. Зона оптимума – диапазон действия фактора, наиболее благоприятный для жизнедеятельности.

За пределами зоны оптимума начинается зона угнетения (пессимума). Если значение фактора лежит в зоне пессимума, то организм испытывает угнетение, однако процесс жизнедеятельности может продолжаться. Таким образом, зона пессимума лежит в пределах выносливости организма. За пределами выносливости организма происходит его гибель.

Фактор, по своему значению находящийся на пределе выносливости организма, или выходящий за такое значение, называется ограничивающим (лимитирующим). Существует закон ограничивающего фактора (закон минимума Либиха), гласящий, что для организма наиболее значим фактор, который более всего отклоняется от своего оптимального значения.

Метафорически представить этот закон можно с помощью “бочки Либиха”. Смысл данной метафоры в том, что вода при заполнении бочки начинает переливаться через наименьшую доску, таким образом, длина остальных досок уже не играет роли. Так и наличие выраженного ограничивающего фактора сводит на нет благоприятность остальных факторов.

Саморазвитие и смена экосистем. Устойчивость и динамика экосистем

И растения, и животные связаны между собой многообразными отношениями. Все эти организмы образуют природные сообщества.

Cообществом (биоценозом) называется совокупность видов растений и животных, которые длительное время сосуществуют в определённом пространстве и представляют собой определённое экологическое единство. 

Изменения происходят в нарушенных и сформировавшихся экосистемах и могут быть направлены как на восстановление, так и на смену самих экосистем. Последовательно идущие друг за другом смены сообществ на одной территории называют саморазвитием биогеоценоза.

В сообществах постоянно происходят изменения. Изменяется их видовой состав, численность тех или иных групп организмов, трофическая структура, продуктивность и все остальные показатели. То есть сообщества изменяются во времени.

Закономерный и последовательный процесс смены сообществ на определённом участке, вызванный взаимодействием живых организмов между собой и окружающей их абиотической средой, называется сукцессией.

Примерами сукцессий являются постепенное зарастание сыпучих песков, каменистых россыпей, отмелей и др.

Бывшие поля быстро покрываются разнообразными однолетними растениями. Сюда же попадают семена древесных пород: сосны, ели, берёзы. Они легко и на большие расстояния разносятся ветром и животными. В слабозадернённой почве семена начинают прорастать. В наиболее благоприятном положении оказываются светолюбивые мелколиственные породы.

Устойчивость экосистем, Биология

Классический пример сукцессии — зарастание озера. Вначале водная гладь мелеет, затягивается со всех сторон сплавиной, на дно опускаются отмершие части растений. Постепенно зеркало воды затягивается травой. Этот процесс будет длиться несколько десятков лет, а затем на месте озера или старицы образуется верховое торфяное болото.

  • Ещё позже болото постепенно начнёт зарастать древесной растительностью, скорее всего сосной.
  • Вместе с изменением растительности меняется и животный мир территории, подверженной сукцессии.
  • Для старицы или озера типичны водные беспозвоночные, рыбы, водоплавающие птицы.
  • Земноводные и некоторые млекопитающие — ондатра, норки.

Итог сукцессии — сфагновый сосняк. Теперь здесь обитают другие птицы и млекопитающие — глухарь, куропатка, лось, медведь, заяц и т. д.

Любое новое местообитание — обнажившийся песчаный берег реки, застывшая лава потухшего вулкана — сразу оказывается ареной заселения новыми видами. Какие конкретно виды растений и животных будут заселять новое местообитание, будет зависеть от биотических и абиотических факторов.

Вновь поселившиеся организмы постепенно изменяют среду обитания. Например, меняют её влажность. Следствием такого изменения среды является развитие новых, устойчивых к изменениям видов и вытеснение предыдущих. С течением времени формируется новый биоценоз с заметно отличающимся от первоначального видовым составом.

Вначале сукцессионные изменения происходят быстро. Затем их скорость снижается. Всходы берёзы образуют густую поросль, которая затеняет почву, и даже если вместе с берёзой прорастают семена ели, её всходы, оказавшись в весьма неблагоприятных условиях, сильно отстают от берёзовых.

Светолюбивая берёза — серьёзный конкурент для ели. К тому же специфические биологические особенности берёзы дают ей преимущества в росте.

Берёзки в возрасте 2-3 лет могут достигать высоты 100-120 см, тогда как ёлочки в том же возрасте едва дотягивают до 10 см. Постепенно, к 8-10 годам берёзы формируют устойчивое берёзовое насаждение высотой до 10-12 м.

Под развивающимся пологом берёзы начинает подрастать и ель, образуя подрост разной степени густоты. Перемены происходят и в нижнем, травяно-кустарничковом ярусе.

Постепенно, по мере смыкания крон берёзы, светолюбивые виды, характерные для начальных стадий сукцессии, начинают исчезать и уступают место теневыносливым.

Изменения касаются и животного компонента биоценоза. На первых стадиях поселяются майские хрущи, берёзовая пяденица.

Затем многочисленные птицы — зяблик, славка, пеночка.

Мелкие млекопитающие — землеройка, крот, ёж. Изменение условий освещения начинает благоприятно сказываться на молодых ёлочках, которые ускоряют свой рост.

Если на ранних этапах сукцессии прирост ёлок составлял 1-3 см в год, то по прошествии 10-15 лет он достигает уже 40-60 см.

Где-то к 50 годам ель догоняет берёзу в росте, и образуется смешанный елово-берёзовый древостой. Из животных появляются зайцы, лесные полёвки и мыши, белки.

Сукцессионные процессы заметны и среди птичьего населения: в таком лесу поселяются иволги, питающиеся гусеницами.

Смешанный елово-берёзовый лес постепенно сменяется еловым. Ель перегоняет в росте берёзу, создаёт значительную тень, и берёза, не выдержав конкуренции, постепенно выпадает из древостоя.

Таким образом происходит сукцессия, при которой вначале берёзовый, а затем смешанный елово-берёзовый лес сменяется чистым ельником. Естественный процесс смены березняка ельником длится более 100 лет. Именно поэтому процесс сукцессии иногда называют вековой сменой.

Различают первичные и вторичные сукцессии.

Первичные сукцессии возникают на субстратах, не затронутых почвообразованием, и связаны с формированием не только фитоценоза, но и почвы.

Примером первичной сукцессии может являться поселение накипных и листовых лишайников на камнях. Под действием выделений лишайников каменистый субстрат постепенно превращается в подобие почвы, где поселяются уже кустистые лишайники, зелёные мхи, затем травы и другие растения и т. д.

Также примером первичной сукцессии является заселение вновь образованных песчаных дюн, где растительность прежде отсутствовала. Здесь вначале поселяются многолетние растения, способные переносить засушливые условия, например пырей ползучий.

Он укореняется и размножается на зыбучем песке, укрепляет поверхность дюны и обогащает песок органическими веществами. Физические условия среды, находящейся в непосредственной близости от многолетних трав, изменяются.

Вслед за многолетниками появляются однолетники.

Устойчивость экосистем, Биология

Их рост и развитие часто способствуют обогащению субстрата органическим материалом, так что постепенно создаются условия, подходящие для произрастания таких растений, как ива, толокнянка, чабрец. Эти растения предшествуют появлению проростков сосны, которые закрепляются здесь и, подрастая, через много поколений образуют сосновые леса на песчаных дюнах.

Вторичные сукцессии развиваются на месте сформировавшихся биоценозов после их нарушения, например в результате эрозии, засухи, пожара, вырубки леса и т. п.

Примером вторичной сукцессии является образование торфяного болота при зарастании озера, где влаголюбивые виды растений (камыш, тростник, осока) начинают разрастаться вблизи берегов сплошным ковром. Отмершие остатки растений накапливаются на дне водоёма.

Из-за малого количества кислорода в застойных водах растения медленно разлагаются и постепенно превращаются в торф. Появляются сфагновые мхи, на сплошном ковре которых произрастают клюква, багульник, голубика. Здесь же могут поселяться сосенки, образуя редкую поросль.

С течением времени формируется экосистема верхового болота.

Ни один вид растений или птиц не может процветать на протяжении всей сукцессии. По мере роста древостоя животное население в значительной степени меняет свой состав.

Появляющиеся хищники и паразиты контролируют видовую структуру биоценоза. Поэтому последовательная и непрерывная смена видов во времени — характерная черта большинства сукцессионных процессов.

Продолжительность сукцессии во многом определяется структурой сообщества. При первичной сукцессии для развития устойчивого сообщества требуются многие сотни лет.

Вторичные сукцессии протекают значительно быстрее первичных. Это объясняется тем, что первичное сообщество оставляет после себя достаточное количество питательных веществ, развитую почву, что создаёт условия для ускоренного роста и развития новых поселенцев.

Типы равновесий экосистем

В основе сукцессии лежит неполный биологический круговорот в данном сообществе. Каждый живой организм в результате жизнедеятельности меняет вокруг себя среду, изымая из неё часть веществ и насыщая её продуктами метаболизма.

Растения аккумулируют солнечную энергию, запасают её в виде органических соединений.

Устойчивость экосистем, Биология

Часть этой энергии расходуется самим растением. Оставшаяся энергия (чистая продукция) распределятся далее по трофическим уровням.

Если организмы будут потреблять меньше энергии, чем производить, то в экосистеме будет происходить накопление органического вещества, если больше — его уменьшение. И то, и другое будет приводить к изменениям сообщества.

При избытке ресурса всегда найдутся виды, которые смогут его освоить, при его недостатке — часть видов вымрет. Такие изменения и составляют сущность экологической сукцессии.

Изменения сообщества всегда происходят в направлении к равновесному состоянию.

Если прирост биомассы растений покрывает затраты энергии других организмов сообщества, то биомасса организмов в такой системе остаётся постоянной, а сама система неизменной, или равновесной.

В таком случае прирост биомассы будет потрачен на поддержание жизнедеятельности организмов.  Такое сообщество будет замкнутым. В замкнутом сообществе не происходит поступления дополнительной биомассы извне. А собственный суммарный прирост биомассы полностью расходуется на поддержание его жизнедеятельности.

Итак, это первый тип равновесия экосистемы, характерный для замкнутого сообщества

Примером второго типа равновесия может являться текучая река. В ней органическое вещество возникает не только в результате деятельности автотрофов, но и благодаря притоку веществ. 

В таком типе равновесия расходы на поддержание жизни сообщества равны приросту биомассы собственных автотрофов плюс биомасса органического вещества, которая поступает извне.

Третий тип равновесия характерен для сельскохозяйственных экосистем.

Здесь происходит постоянное изъятие органических веществ (то есть урожая). В таких экосистемах равновесие практически отсутствует. Обратного возврата использованных веществ не происходит. Поэтому для существования такой экосистемы человеку необходимо искусственно поддерживать сообщество.

Любому сообществу свойственны общие изменения, которые не зависят от видового состава или географического местоположения.

Выделяют главные свойства сукцессионных изменений.

Первое свойство. Виды растений и животных в процессе сукцессии непрерывно сменяют друг друга.

Второе свойство. Во время сукцессии происходит повышение видового богатства. 

Третье свойство. По мере увеличения видового богатства происходит возрастание биомассы органического вещества.

Четвёртое свойствосукцессионных изменений. На поздних стадиях сукцессии снижается скорость прироста биомассы сообщества и увеличивается количество энергии, которая необходима для поддержания его жизни.

Если сравнивать зрелое сообщество и молодое, то можно сказать, что зрелое сообщество с его большим разнообразием и обилием организмов, развитой трофической структурой и с уравновешенными потоками энергии способно противостоять изменениям физических факторов (например, температуры, влажности) и даже некоторым видам химических загрязнений в гораздо большей степени, чем молодое сообщество.

В зрелом сообществе прирост биомассы (продукция) уменьшается. Однако потребление органических веществ гораздо выше, чем в молодом сообществе. Молодое сообщество, в отличие от зрелого, способно производить новую биомассу в гораздо больших количествах, чем старое.

Таким образом, устойчивость экосистемы обеспечивается видовым разнообразием растительного и животного мира, способностью к саморегуляции численности компонентов всего биоценоза путём ограничения числа особей в популяциях, высокой первичной продуктивностью, отсутствием неиспользованных органических остатков, а также стабильностью климатических факторов.

26. Причины устойчивости и смены экосистем

  • 26. Причины устойчивости и смены экосистем
  • Вспомните!
  • Какими взаимоотношениями связаны все организмы, входящие в состав одной экосистемы?
  • Какая энергия поддерживает постоянный круговорот веществ в экосистеме?

Причины устойчивости экосистем. Каждая экосистема – это динамическая структура, состоящая из сотен и даже тысяч видов продуцентов, консументов и редуцентов, связанных друг с другом сложной сетью пищевых и непищевых взаимоотношений. Устойчивость экосистемы зависит от её видового многообразия и сложности цепей питания. Чем сложнее и разветвлённее цепи, тем стабильнее существование экосистемы. Экологические возможности разных видов так дополняют и компенсируют друг друга, что в случае незначительных изменений условий окружающей среды сложная система сохраняет свою целостность.

Каждый вид в составе экосистемы представлен популяцией, поэтому стабильное существование экосистемы определяется стабильным существованием входящих в неё популяций.

Изменение внешних условий воздействует на некоторые виды неблагоприятно, их численность уменьшается, и они могут вовсе исчезнуть из экосистемы.

Такое направленное увеличение или уменьшение численности особей какой-либо популяции может привести к изменению экосистемы в целом. Например, при резком увеличении численности копытных в степной зоне может произойти полное уничтожение растительности.

Нарушение травяного покрова вызовет ветровую эрозию почвы, и верхний плодородный слой может быть полностью уничтожен. Количество копытных в отсутствие основного корма снизится, но это не приведёт к автоматическому восстановлению растительности в экосистеме.

Абсолютно неизменной и статичной может быть только неживая система. Даже в самых стабильных экосистемах в зависимости от сезона, времени суток, погодных влияний происходят определённые изменения.

Если эти изменения отражают некие циклические процессы во внешней среде, они не приводят к направленному преобразованию экосистемы. Все показатели такой экосистемы колеблются около некой средней величины, т. е.

поддерживается динамическое равновесие.

Равновесное состояние экосистемы означает, что то количество продукции, которое синтезируют зелёные растения и другие продуценты, в энергетическом отношении соответствует потребностям экосистемы. В этом случае биомасса экосистемы остаётся постоянной, а положение экосистемы равновесным.

Если затраты в экосистеме снизятся, она не сможет перерабатывать всю продукцию, и органическое вещество начнёт накапливаться, если энергозатраты повысятся – исчезать. В обоих случаях равновесие нарушится, что вызовет изменение сообщества.

Эти изменения могут затронуть видовое разнообразие, структуру пищевых цепей, продуктивность и другие показатели системы, что в конце концов приведёт к смене экосистем.

Смена экосистем. Этот процесс заключается в том, что в определённом районе в строго определённой последовательности происходит закономерная смена популяций различных видов.

Как правило, это очень длительный процесс, однако иногда изменения в экосистеме можно проследить на протяжении жизни нескольких поколений.

Примером таких быстрых изменений может служить зарастание небольшого озера (рис. 80).

Сначала по периметру озера образуется сплавина – сплошной ковёр плавающих растений, которые, погибая, опускаются на дно водоёма. В придонных слоях в условиях нехватки кислорода редуценты не успевают перерабатывать все отмирающие части растений и животные остатки.

В результате образуются торфяные отложения, озеро постепенно мелеет и превращается в болото. В дальнейшем болото зарастает с краёв, превращаясь в луг, а позднее в лес. Таким образом, полностью меняется видовой состав и растительной, и животной части экосистемы.

На месте бывшего озера формируется экосистема леса.

Устойчивость экосистем, Биология

Рис. 80. Смена сообществ при зарастании водоёма. Растительность продвигается от берегов к центру водной поверхности (А). Этот процесс продолжается, и озеро постепенно заполняется торфом (Б, В). После того как озеро полностью заполнится торфом, на его месте вырастает лес (Г)

Экосистемы всегда стремятся к сохранению равновесия, поэтому при смене экосистем каждая последующая стадия развития длительнее и устойчивее предыдущих.

В природе смены экосистем происходят постоянно и характеризуются определёнными закономерностями: увеличивается видовое разнообразие, нарастает общая биомасса, усложняются цепи питания. Всё это постепенно приводит к формированию стабильных сообществ.

Конечный этап развития экосистем зависит от климатических, почвенных, водных и топографических условий. В одних районах земного шара наиболее устойчивым сообществом будет лес, в других – степь, а в третьих – тундра.

С течением времени условия на земном шаре постепенно изменяются в том или ином направлении, и то сообщество, которое было стабильным в определённый период исторического развития, спустя тысячи лет уступит место иному стабильному сообществу, чья структура соответствует изменившимся условиям. Так, более 10 тыс.

лет назад в эпоху последнего оледенения на месте нынешних широколиственных листопадных лесов находилась тундра.

Если не считать землетрясений, оползней, извержений вулканов и других природных катастроф, естественные смены экосистем происходят постепенно. Однако вмешательство человека часто вызывает резкие и глобальные изменения, приводящие к нарушениям или гибели экосистем.

Вопросы для повторения и задания

1. Какое значение для устойчивости экосистемы имеет её видовое разнообразие?

2. Что такое равновесное состояние экосистемы?

3. Приведите примеры быстрой смены экосистем.

4. От чего зависит конечный этап развития экосистемы?

Подумайте! Выполните!

1. Какие экосистемы наиболее устойчивы в вашей местности? Объясните, чем это обусловлено.

2. Объясните, к чему приводит необоснованная и случайная акклиматизация новых видов. Приведите примеры, которые вам известны из курсов ботаники и зоологии.

3. Проведите исследование. Изучите видовой состав растений и животных одного из наиболее распространённых в вашей местности типов биогеоценозов. Используйте для этой работы атласы-определители. Создайте карту биогеоценоза, нанесите на неё ареалы распространения основных видов. Есть ли в этом биоценозе виды, внесённые в Красную книгу? Оцените индексы видового разнообразия.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Сукцессия. Изучая развитие и смены экосистем, экологи используют понятие «сукцессия». Сукцессия – это закономерный направленный процесс изменения сообществ в результате взаимодействия живых организмов между собой и с окружающей их абиотической средой.

Различают два вида экологических сукцессий: первичные сукцессии происходят на субстрате, изначально не содержащем органического вещества, например на голой скале, застывшем лавовом потоке; вторичные – идут на субстратах, с которых были удалены ранее существовавшие на них сообщества, например зарастание брошенного поля.

Данный текст является ознакомительным фрагментом.

Устойчивость экосистем

Толерантность вида. Термин толерантность (от лат.

 tolerantia – терпение) означает выносливость вида по отношению к колебаниям какого-либо экологического фактора, или другими словами, способность организмов переносить отклонения экологических факторов среды от оптимальных для них величин.

Изменения величин этих факторов для каждого организма допустимы только в определенных пределах, при которых сохраняется нормальное функционирование организма, т.е. его жизнеспособность. Допустимые пределы изменений экологических факторов среды называются границами толерантности.

Разные виды организмов отличаются более широкими или более узкими границами толерантности. Чем большие пределы изменения параметров среды безболезненно выдерживает конкретный организм, тем выше толерантность, или устойчивость этого организма к изменению экологических факторов среды.

Адаптация организмов к изменению экологических факторов. Показатели устойчивости организмов в изменяющихся условиях среды обитания определяются возможностями организмов приспосабливаться (адаптироваться) к изменениям биотических и абиотических факторов.

Адаптациями называются эволюционно выработанные и наследственно (генетически) закрепленные свойства организмов, обеспечивающие их нормальную жизнедеятельность при изменениях экологических факторов. Адаптационные возможности у разных видов очень сильно различаются.

Например, береза хорошо растет как на сухих, так и увлажненных почвах, а сосна – только на почвах с умеренным увлажнением.

Часто важны не только пределы изменения экологических факторов, но и скорость их изменения, т.е. динамика. Не все виды способны приспособиться к быстрым изменениям условий среды. Виды, которые не могут (или не успевают) приспособиться к изменившимся условиям, вымирают и их экологические ниши в экосистемах занимают другие, более пластичные виды.

  • Рассмотрим основные виды адаптаций организмов к изменениям экологических факторов. Наиболее важными из них являются:
  • — морфологические;
  • — физиологические;
  • — поведенческие.

К морфологическим адаптациям относятся видоизменения органов, например, развитие у баобаба колючек вместо листьев, а у китов и дельфинов – плавников вместо ног. Физиологические адаптации связаны с особенностями ферментативного набора в пищеварительном тракте.

Так, потребность животных во влаге удовлетворяется в пустынях путем биохимического окисления жиров, а у растений биохимические процессы фотосинтеза позволяют создавать органическое вещество из неорганических соединений.

Поведенческие адаптации проявляются, например, в способах обеспечения теплообмена у птиц путем сезонных перелетов, у животных – с помощью линьки; для обеспечения пищей хищники используют приемы затаивания (в засаде), а их жертвы – защитную окраску.

Устойчивость экосистем – это способность экосистем сохранять структуру и нормальное функционирование при изменениях экологических факторов.

Рассмотренные выше адаптации организмов к изменениям факторов среды обитания в определенной степени обеспечивают устойчивость экосистем, в состав которых они входят, к изменению экологических факторов среды.

Однако, как и всякая более сложная система, экосистема по сравнению с отдельными видами организмов имеет более высокую степень надежности функционирования в изменяющейся среде, так как на системном уровне формируются и развиваются новые, системные механизмы обеспечения устойчивости и живучести экосистем, которые отсутствовали у отдельных видов. Такие эволюционно выработанные механизмы приспособления экосистем к изменениям среды обитания называются адаптациями экосистем.

Рассмотрим адаптации экосистем, состоящие из адаптационных механизмов двух уровней: видовой уровень и интеграционный, или системный уровень. Видовой (низший) уровень соответствует ранее рассмотренным механизмам в подразделе «Адаптации организмов к изменению экологических факторов».

Системный уровень образуют приспособительные механизмы, возникающие за счет видового взаимодействия по трофическим цепям и сетям.

Природа этих интеграционных, системных механизмов обеспечения устойчивости экосистем основана на круговороте веществ, который осуществляется с помощью трофических цепей.

Существование биогеохимических круговоротов создает возможность для саморегуляции экосистем (или гомеостаза), что придает экосистеме устойчивость в течение длительных периодов. Например, показателем устойчивости глобальной экосистемы, связанной с круговоротом веществ, может служить следующий факт.

Известно, что 93% массы тела человека составляют 4 химических элемента: кислород, углерод, водород и кальций, которые, во-первых, входят в перечень одиннадцати самых распространенных в геосферах Земли химических элементов, и, во-вторых, эти четыре элемента сами образуют более 56% массы геосфер.

Видовое разнообразие – также один из факторов устойчивости экосистем к неблагоприятным факторам среды. Разнообразие обеспечивает как бы подстраховку, дублирование устойчивости.

Например, малочисленный вид при неблагоприятных условиях для другого широко представленного вида может резко увеличить свою численность и таким образом заполнить освободившееся пространство (экологическую нишу), сохранив экосистему как единое целое.

Такая последовательная смена видов или замена одного биоценоза другим называется сукцессией (от лат. сукцедо – следую).

  1. Чтобы лучше уяснить суть сукцессии в экосистеме, рассмотрим два примера:
  2. 1) известно, что после лесного пожара сначала появляются лиственные породы, а затем через 70–100 лет их сменяют хвойные;
  3. 2) в упавшем дереве сначала поселяются короеды, затем появляются пожиратели древесины, а бактерии и грибы завершают процедуру превращения упавшего дерева в гумус почвы.
  4. Таким образом, увеличение степени разнообразия является основой того, что экосистемы с более длинными цепями питания формируют более интенсивный круговорот веществ и, следовательно, обладают повышенной устойчивостью благодаря возможностям саморегуляции (гомеостаза).

Гомеостаз.

 Природные экосистемы (например, лесные, степные) существуют в течение длительного времени и обладают определенной стабильностью, для поддержания которой необходима сбалансированность потоков вещества и энергии в процессах обмена между организмами и окружающей средой. Однако абсолютной стабильности в природе не бывает. Поэтому стабильность состояния природных экосистем является относительной, показателем которой может служить, например, периодически изменяющаяся численность популяций разных видов в экосистеме: численность одних видов увеличивается, других – уменьшается. Такое динамически равновесное состояние, или состояние подвижностабильного равновесия экосистем, называют гомеостазом (от греч. гомео – тот же; стазис – состояние).

Ключевой для понимания гомеостаза экосистем термин «подвижно-стабильное равновесие» означает, что устойчивое функционирование экосистем в изменяющихся условиях среды возможно именно вследствие того, что экосистема находится в квазиравновесном состоянии, принципиально отличающимся от понимания состояния равновесия в физике. Чтобы понять это различие, кратко рассмотрим составные части этого термина.

а) Стабильность означает, что природные экосистемы существуют в течение длительного времени и обладают определенной относительной стабильностью во времени и пространстве.

Заметим, что особенностью искусственных (техногенных, созданных человеком) экосистем является то, что человек сам должен поддерживать равновесие в этих экосистемах, т.е.

управлять процессами их функционирования, например, замена ила в региональных, муниципальных или производственных водоочистных сооружениях, в которых культивируются колонии бактерий, пожирающих, сорбирующих, разлагающих загрязняющие вещества в сточных водах.

б) Подвижность означает изменчивость свойств (например, численности популяций) и структуры экосистемы, т.е. совокупности видов.

Последовательные изменения в состоянии равновесия в природных экосистемах отражаются в смене видов (например, в процессе сукцессии), сопровождающейся и изменениями в структуре и свойствах трофических цепей (сетей).

Разнообразие видов формирует сукцессию, обеспечивая заполненность пространства жизнью и увеличивая степень замкнутости биогеохимического круговорота в экосистеме.

Следовательно, гомеостатичность – общее свойство всех экосистем, зависящее от эффективности комплекса адаптационных механизмов, действующих как на уровне отдельных видов, так и на уровне экосистемы в целом. Гомеостатичность зависит от возраста и видового разнообразия экосистем и поэтому сильно различается как у разных сообществ, так и в естественных и искусственных экосистемах.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]