Кислородный этап энергетического обмена, Биология

Ключевое место в метаболизме всех типов клеток занимают реакции с участием сахаров, например, глюкозы, потому что процесс расщепления глюкозы идет наиболее быстро и легче, ведь организму необходимо достаточно быстро восстанавливать энергетические затраты.

Аминокислоты и белки использовать для образования энергии слишком не выгодно, так как большая их часть является структурными компонентами клеток. В этом случае организм разрушал бы сам себя.

Жиры могут использоваться для получения энергии, но главным образом после того, как израсходовались запасы углеводов, ведь жиры из-за своей гидрофобности очень медленно окисляются и малоподвижны в клетках. При этом из жиров в отсутствие кислорода АТФ получить нельзя, а из глюкозы можно.

Поэтому организм выбирает наиболее выгодный путь получения энергии в виде молекул АТФ за счет расщепления, в первую очередь, глюкозы.

Второй этап энергетического обмена называют бескислородным, так как процесс расщепления глюкозы и образования молекул АТФ идет без участия кислорода.

Гликолиз (от греч. «гликос» сладкий, «лизис»- расщепление) – последовательное расщепление глюкозы.

Гликолиз идет в цитоплазме клеток без участия кислорода. Он состоит из последовательных реакций, каждая из которых катализируется общим ферментом.

В ходе реакций гликолиза молекула глюкозы С6Н12О6 распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК)– С3Н4О3, при этом суммарно образуются две молекулы АТФ и вода.

Акцептором (лат. accipio- «я принимаю, получаю») водорода в реакции гликолиза служит кофермент НАД+.

  • НАД+ (никотинамидадениндинуклеотид) – кофермент, имеющийся во всех живых клетках.
  • НАД+ переносит электроны из одной реакции в другую.
  • НАД+ является окислителем и забирает электрон от другой молекулы и один водород, восстанавливаясь в НАД H, который далее служит восстановителем и уже отдаёт электроны.
  • Уравнение реакции гликолиза:

Кислородный этап энергетического обмена, Биология

У меня есть дополнительная информация к этой части урока!

Закрыть

  1. Клетка кроме аккумулятора АТФ использует и другие вещества, например, аккумуляторы водорода.
  2. Существуют приемщики (акцепторы) водорода- ферменты, которые могут брать у одних веществ водород и переносить его к другим веществам.
  3. Таких переносчиков три типа:
  4. Еще существует переносчик остатков карбоновых кислот, который называется КоА (КоэнзимА). 
  5. НАДФ (никотинамидадениндинуклеотидфосфат)- отличается от НАД содержанием ещё одного остатка фосфорной кислоты.
  6. НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.
  7. В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях.
  8. ФАД+ присоединяет к себе сразу два атома водорода и превращается ФАД Н2.
  9. Все эти вещества активно участвуют в процессах образования молекул АТФ
  • Дальнейшая судьба ПВК может быть различной и зависит от того, какой тип извлечения энергии предпочитают организмы: анаэробный (бескислородный) или аэробный (кислородный).
  • Например, паразитические черви, живущие в кишечнике организмов хозяев, выбирают бескислородный путь преобразования ПВК, так как они мало подвижны и их клеткам хватает энергии, которая образуется при гликолизе глюкозы.
  • Эти виды паразитов выбирают именно такой путь преобразования энергии еще и потому, что при распаде глюкозы образуются ядовитые вещества (ацетон, уксусная кислота и этиловый спирт), которые действуют угнетающе на организм хозяина и ослабляют его иммунитет, что, в свою очередь, помогает паразиту существовать в агрессивной для него среде.

Кислородный этап энергетического обмена, Биология

У меня есть дополнительная информация к этой части урока!

Закрыть

  1. Есть такое заболевание (гиполактазия), при котором человек не может усваивать лактозу, которая является основным сахаром, содержащимся в молоке и молочных продуктах.
  2. Если человек употребил пищу с содержанием лактозы, то это может привести к тому, что кишечная палочка (бактерия нашего кишечника) всю поступившую лактозу начинает перерабатывать сама, в результате чего активно размножается и выделяет много ядовитых веществ, которые образовались в ходе гликолиза (распада сахара).
  3. Организм пытается вывести из себя все эти вредные вещества, усиливается работа кишечника, происходит резь и вздутие живота из-за ядовитых веществ и активного размножения бактерий.
  4. Но в целом кишечная палочка помогает человеку расщепить те вещества, которые не способен расщепить он сам (к примеру, клетчатку) и получить витамины группы В

Образовавшаяся в результате гликолиза пировиноградная кислота подвергается дальнейшему преобразованию уже на внутренней мембране митохондрий, то есть переходит на третий этап энергетического обмена.

Вывод: на втором этапе энергетического обмена, гликолизе, из 1 молекулы глюкозы образуется 2 молекулы ПВК и 2 молекулы АТФ.

Кислородный этап энергетического обмена, Биология

  • Если в клетку прекратилась подача кислорода, то ПВК подвергается брожению, к примеру, в клетках растений, которые были затоплены во время весенних паводков.
  • В зависимости от того, какие конечные продукты образуются, выделяют несколько видов брожения.
  • Рассмотрим основные виды:
  • 1. Спиртовое брожение
  • Встречается в основном у дрожжей и растений.
  • Конечными продуктами являются этанол и углекислый газ.
  • Дрожжи:

Кислородный этап энергетического обмена, Биология

  1. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание.
  2. Подавление спиртового брожения кислородом называется эффектом Пастера.
  3. Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.
  4. При этом типе брожения сначала происходит образование уксусного альдегида, а затем этилового спирта:

Кислородный этап энергетического обмена, Биология

  • 2. Молочнокислое брожение
  • Осуществляется с помощью лактобактерий, бифидобактерий, стрептококков.
  • Из ПВК они образуют молочную кислоту, ацетон, янтарную и уксусную кислоту.
  • Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.

Кислородный этап энергетического обмена, Биология

У меня есть дополнительная информация к этой части урока!

Закрыть

Пробиотики- класс микроорганизмов и веществ микробного и иного происхождения, использующихся в терапевтических целях, а также пищевые продукты и биологически активные добавки, содержащие живые микрокультуры.

Пробиотики обеспечивают при систематическом употреблении в пищу благоприятное воздействие на организм человека в результате нормализации состава и (или) повышения биологической активности нормальной микрофлоры кишечника

У животных и человека при недостатке кислорода также может происходить молочнокислое брожение с образованием молочной кислоты.

В мышцах есть запасы углеводов в виде гликогена. При долгой и усиленной работе, кровь не успевает снабдить мышцы достаточным количеством кислорода, в результате чего мышечные клетки вынуждены переходить на бескислородный способ получения АТФ.

При этом образуется молочная кислота, вызывающая боли в мышцах.

Кислородный этап энергетического обмена, Биология

Квашение- разновидность молочнокислого брожения, в процессе которого образуется молочная кислота, оказывающая на продукты (наряду с добавляемой поваренной солью) консервирующее и размягчающее действие.

Квашение применяется при консервировании овощей и в кожевенном производстве.

У меня есть дополнительная информация к этой части урока!

Закрыть

Скелетные мышцы человека неоднородны. Мышца может состоять из нескольких типов волокон в разных пропорциях.

Выделяют:

  • красные мышечные волокна (медленные, аэробные)
  • белые мышечные волокна (быстрые, анаэробные).

Красные волокна содержат много митохондрий и обладают высокой способностью к аэробному окислению глюкозы и жирных кислот. Они хорошо снабжаются кровью и приспособлены к продолжительной работе.

  1. В белых мышечных волокнах мало митохондрий, но много запасов гликогена, в них с большой скоростью происходит анаэробный (бескислородный) распад гликогена с образованием молочной кислоты.
  2. Мышцы с большой долей белых волокон быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них быстрее наступает утомление: запасы гликогена в мышечных клетках быстро истощаются, а поступление глюкозы из крови и ее использование происходят медленно.
  • 3. Маслянокислое брожение
  • Масляная кислота, бутанол, ацетон, уксусная и ряд других органических кислот являются продуктами сбраживания углеводов бактериями- сахаролитическими анаэробами.
  • Благодаря определению наличия тех или иных кислот в клетке можно установить, какие бактерии образовали эти кислоты.
  • Знание механизмов брожения имеет большое практическое значение не только для живых организмов, но и для человека:
  • для разработки методов диагностики инфекционных заболеваний, по набору ферментов или кислот, которые образовались во время брожения
  • для создания современных биотехнологий молочнокислых продуктов, сыра, хлеба, вина и многих других продуктов питания

Недостатком процессов брожения является извлечение незначительной доли той энергии, которая заключена в связях органических молекул.

Для бактерий, паразитических видов, живущих в бескислородной среде, энергии, образующейся в результате брожения или гликолиза, достаточно для существования, поэтому они, в отличие от человека, не нуждаются в кислороде.

Также брожение является жизненно важным процессом для хвойных растений. В зимний период устьица хвои закупориваются смолой и газообмен с окружающей средой практически прекращается, в этом случае для получения энергии в клетках активно идет процесс спиртового брожения.

Читайте также:  Биологическая природа человека

Кислородный этап энергетического обмена

Следующий этап энергетического обмена, идущий за гликолизом,  — клеточное дыхание, или, как его еще называют, биологическое окисление. Это кислородный этап окисления органических соединений.

Если рассматривать дыхание в широком смысле слова, то это процесс поглощения живыми организмами кислорода (О2) из окружающей среды и выделения ими углекислого газа (СО2). Этот процесс необходим для поддержания внутриклеточных окислительных процессов, обеспечивающих энергетический обмен.

Дыхание может быть внешним дыханием и тканевым или клеточным. Что такое внешнее дыхание понятно из названия. Так называют процесс газообмена между живым организмом и окружающей его средой.  Тканевое или клеточное дыхание (еще называют биологическое окисление) – совокупность ферментативных окислительно-восстановительных реакций.

В результате этих реакций сложные органические вещества окисляются кислородом до углекислого газа, при этом освобождается энергия, запасаемая клетками в форме АТФ.

Клеточное дыхание у растений, животных и большей части аэробных микроорганизмов начинается с отщепления СО2 (декарбоксилирования) от молекулы пировиноградной кислоты (пирувата), которая была образована в процессе гликолиза. Таким образом, гликолиз является необходимой подготовительной стадией клеточного дыхания при расщеплении углеводов.

В процессе этой реакции от пирувата отрывается СО2 и образуется двухуглеродный остаток – радикал уксусной кислоты (ацетил-радикал). Этот двухуглеродный остаток  присоединяется к молекуле универсального переносчика углеводородных радикалов — кофермента А — с образованием ацетил-кофермента А (ацетил-КоА).

В результате этой реакции НАД+ восстанавливается до НАДН. Ацетил-КоА и НАДН образуются и при окислении жирных кислот, которые также являются субстратами клеточного дыхания. В дальнейшем окисление ацетил-КоА происходит в цикле Кребса, а НАДН – в дыхательной цепи митохондрий. В цикл Кребса на различных стадиях могут вступать все аминокислоты.

Таким образом, в цикле Кребса сходятся пути окисления и углеводов, и жиров, и белков.

Кислородный этап энергетического обмена, Биология

Отщепление молекулы углекислого газа от молекулы пировиноградной кислоты.

Цикл Кребса (также его называют цикл трикарбоновых кислот или цикл лимонной кислоты) – это сложный многоступенчатый окислительно-восстановительный процесс, в результате которого остаток уксусной кислоты, полученный от ацетил-КоА, полностью окисляется до 2-х молекул СО2 с образованием 3-х молекул НАДН, одной молекулы ФАДН2 и одной молекулы ГТФ. Все ферменты цикла Кребса также, как и ферменты окисления жирных кислот, локализованы в матриксе митохондрий, а один фермент – сукцинатдегидрогеназа – находится во внутренней митохондриальной мембране.

Кислородный этап энергетического обмена, Биология

Цикл Кребса

На первой стадии цикла Кребса остаток уксусной кислоты передается от ацетил-КоА на молекулу щавелевоуксусной кислоты (оксалоацетата) с образованием лимонной кислоты (цитрата), которая через промежуточную реакцию образования цис-аконитовой кислоты превращается в изолимонную кислоту (изоцитрат).

От изолимонной кислоты отщепляется СО2 и 2 атома Н+, в результате чего образуется молекула НАДН и a-кетоглутаровая кислота (a-кетоглутарат), которая взаимодействует с молекулой кофермента А.

При этом отщепляется вторая молекула СО2 и образуется еще одна молекула НАДН и богатое энергией соединение сукцинил-КоА, которое расщепляется с образованием свободной янтарной кислоты (сукцината), что сопровождается синтезом ГТФ из ГДФ и Фн.

Янтарная кислота окисляется до фумаровой (фумарата) с образованием ФАДН2, фумаровая кислота с присоединением воды превращается в яблочную (малат), а яблочная кислота окисляется до щавелевоуксусной (оксалоацетата) с образованием НАДН. На этой стадии цикл Кребса замыкается, т.е. оксалоацетат может снова вступать в цикл и конденсироваться со следующим остатком уксусной кислоты с образованием цитрата.

Таким образом, суммарную реакцию цикла Кребса можно описать следующим уравнением:

Ацетил-КоА +3НАД+ + ФАД + ГДФ + Фн +3Н2О —> 2СО2 + 3НАДН + 3Н+ + ФАДН2 + ГТФ + КоА

Энергия, освобождаемая при окислении ацетил-КоА, запасается в виде одной молекулы ГТФ (которая может превращаться в АТФ) и 4-х молекул восстановительных эквивалентов (3 молекулы НАДН и одна ФАДН2), которые могут или использоваться в различных процессах биосинтеза, или окисляться.

Дальнейшее их окисление происходит в дыхательной цепи митохондрий, которая локализована во внутренней митохондриальной мембране. При окислении НАДН в дыхательной цепи митохондрий происходит отрыв от него электронов, и их перенос на молекулу кислорода.

У аэробных бактерий дыхательная цепь расположена в специальных структурах плазматической мембраны – мезосомах, и в общих чертах напоминает дыхательную цепь митохондрий.

Характеристики цикла Кребса

Входящий субстрат Ацетилкоэнзим А — источником ацетильной группы являются пируват, жирные кислоты и аминокислоты. Источником некоторых интермедиатов являются аминокислоты.
Локализация ферментов  Внутренние отделы митохондрий (матрикс)
Образование АТФ Непосредственно в цикле образуется одна молекула ГТФ, которая может быть превращена в АТФ. Функционирует только в аэробных условиях, хотя непосредственно молекулярный кислород в этом метаболическом пути не используется.
Образование коферментов 3НАДН + 3H+ и ФАДН2
Конечные продукты Две молекулы CO2 на каждую молекулу ацетилкоэнзима А, входящую в цикл. Некоторые интермедиаты используются для синтеза аминокислот и других органических молекул, необходимых для осуществления функций клетки
Суммарная реакция АцетилКоА + 3НАД+ + ФАД + ГДФ + Pi + 2H2O —> 2CO2 + KoA + 3НАДН + 3H+ + ФАДН2 + ГТФ

Окислительное фосфорилирование начинается с окисления НАДН в дыхательной цепи митохондрий, сопровождающегося отщеплением двух электронов и протона (Н+).

Окончательным акцептором этих электронов является О2, который соединяется с ионами Н+, находящимися в матриксе, с образованием Н2О.

Электроны, отобранные от НАДН, передаются в дыхательной цепи от одного переносчика к другому, при этом они теряют свой восстановительный потенциал.

Часть энергии, выделяемой при этом, рассеивается в виде тепла, но, кроме того, часть энергии тратится на создание на внутренней мембране митохондрий разности концентраций протонов (электрохимического потенциала) за счет их переноса в нескольких пунктах дыхательной цепи (так называемых пунктах сопряжения) из матрикса в межмембранное пространство.

Разность концентраций протонов получается в результате того, что при переносе электронов от НАДН к кислороду происходит «перекачивание» протонов из матрикса митохондрий в межмембранное пространство.

Кислородный этап энергетического обмена, Биология

«Перекачивание» протонов из матрикса митохондрий в межмембранное пространство

В результате работы дыхательной цепи митохондрий концентрация Н+ в межмембранном пространстве намного выше их концентрации в матриксе, это создает направленный внутрь митохондрий градиент концентрации протонов.

Мембрана митохондрий является для них непроницаемой, т.е. можно сказать, что она работает как плотина гидроэлектростанции, удерживающая воду в водохранилище.

Энергия данного градиента используется ферментом АТФ-синтетазой, переносящим в матрикс ионы Н+ и синтезирующим АТФ из АДФ и Фн.

Для синтеза 1 молекулы АТФ необходимо перенести внутрь митохондрий 3 иона Н+ по градиенту концентрации, следовательно за счет окисления 1 молекулы НАДН может быть синтезировано 3 молекулы АТФ, а при окислении 1 молекулы ФАДН2 – 2 молекулы АТФ.

Кроме того, часть энергии градиента концентрации протонов тратится на перенос через внутреннюю мембрану митохондрий различных веществ. Синтез АТФ в митохондиях ферментом АТФ-синтетазой называют окислительным фосфорилированием, подчеркивая связь этого процесса с окислением органических субстратов.

Характеристики окислительного фосфорилирования

Входящие субстраты Атомы водорода, полученные от НАДН + Н+ и ФАДН2. Молекулярный кислород.
Локализация ферментов Внутренняя мембрана митохондрий
Образование АТФ Три молекулы АТФ на каждую молекулу НАДН + Н+ Две молекулы АТФ на каждую молекулу ФАДН2
Конечный продукт H2O — одна молекула на каждую пару водородов, входящих в цепь
Суммарная реакция 1/4 O2 + НАДН + Н+ + 3АДФ + 3Pi —> H2O + НАД+ + 3АТФ

Таким образом, в результате полного окисления глюкозы до углекислого газа CO2 и воды H2O образуется большое количество АТФ – 38 молекул. Две из них синтезируются в процессе гликолиза, а остальные 36 – при окислении пирувата. 1) при образовании одной молекулы пирувата в процессе гликолизе восстанавливается молекула НАДН, окисление которого в митохондриях дает 3 молекулы АТФ.

2) в процессе декарбоксилировании пирувата и образовании ацетил-КоА будет восстановлена еще 1 молекула НАДН (т.е. это 3 молекулы АТФ). 3) в цикле Кребса образуются 3 молекулы НАДН (это будет 9 молекул АТФ), 1 молекула ФАДН2 (плюс еще 2 молекулы АТФ) и 1 молекула ГТФ (обменивается своим терминальным макроэргическим фосфатом с АДФ, что дает еще 1 молекулу АТФ). Т.е.

, при полном окислении образовавшейся в гликолизе 1 молекулы НАДН и 1 молекулы пирувата получается 18 молекул АТФ, а 2-х – соответственно 36 молекул АТФ.

С учетом того, что в процессе гликолиза образовались 2 молекулы АТФ, полный энергетический выход при окислении глюкозы до углекислого газа (CO2) и воды (H2O) в процессе клеточного дыхания, будет составлять 38 молекул АТФ.

Читайте также:  Класс гидроидные - биология

Кислородный этап энергетического обмена, Биология

Полный энергетический выход окисления глюкозы до углекислого газа и воды в процессе клеточного дыхания составляет 38 молекул АТФ

  • Итоговое уравнение данного процесса будет выглядеть следующим образом:
  • С6H12O6 + 6О2 + 38АДФ + 38Фн —> 6CO2 + 6H2O + 38АТФ
  • Эффективность полного окисления глюкозы до углекислого газа и воды очень высока: от 55 до 70% освобождающейся энергии (в зависимости от конкретных  условий) запасается в виде макроэргических связей в молекулах АТФ; остальная часть энергии рассеивается в виде тепла.
  • Таким образом, основным продуктом реакций энергетического обмена является АТФ.
  •  Перейти к оглавлению.

Энергетический обмен • биология-в.рф

Кислородный этап энергетического обмена, Биология

Цикл Кребса

Энергетический обмен состоит из трех этапов: подготовительного, бескислородного (гликолиз, анаэробное дыхание) и кислородного (аэробное дыхание). У многих многоклеточных животных связан с пищеварительной, дыхательной и кровеносной системами.

Подготовительный этап энергетического обмена

Происходит в цитоплазме клеток всех организмов, в желудочно-кишечном тракте у большинства многоклеточных животных и человека. Под действием ферментов большие органические молекулы расщепляются на мономеры. Эти процессы происходят с выделением незначительного количества энергии, которое рассеивается в виде тепла.

Бескислородный (анаэробный) этап энергетического обмена

Происходит в клетках, всегда предшествует аэробному у большинства организмов (способных использовать кислород).

Анаэробное расщепление – это простейшая известная форма образования и аккумулирования энергии в макроэргических связях молекул АТФ.

Суть его состоит в расщеплении молекулы глюкозы преимущественно путем гликолиза на две молекулы пировиноградной или молочной кислоты (особенно в мышечных клетках).

Две молекулы пировиноградной кислоты (С3Н403) при определенных условиях могут восстанавливаться до молочной (С3Н603). Суммарное уравнение гликолиза:

С6Н1206 + 2АДФ + 2Н3Р04→2С3Н603 + 2АТФ + 2Н20.

Во время гликолиза выделяется около 200 кДж энергии, часть которой расходуется на синтез двух молекул АТФ (84 кдж), а часть рассеивается в виде тепла (116 кДж).

Процесс гликолиза энергетически малоэффективный, так как в макроэргических связях АТФ аккумулируется лишь 35-40 % энергии. Это связано с тем, что не происходит полного распада веществ. Конечные продукты гликолиза еще содержат в себе много энергии в химических связях.

Гликолиз имеет чрезвычайно большое физиологическое значение, несмотря на его низкую эффективность. В условиях дефицита кислорода организм благодаря гликолизу может получать энергию. И вдобавок конечные продукты – пировиноградная и молочная кислоты – в аэробных условиях подвергаются дальнейшему ферментативному расщеплению.

Некоторые микроорганизмы и беспозвоночные животные (преимущественно паразиты) являются анаэробами и не могут использовать кислород. Им присущ лишь анаэробный энергетический обмен.

Существует несколько типов преобразования глюкозы, органических соединений без доступа кислорода с аккумуляцией энергии в виде АТФ, которые называются брожением.

Известны спиртовое брожение (у некоторых дрожжей и бактерий с образованием спирта), маслянокислое (с образованием масляной кислоты), молочнокислое (у молочнокислых бактерий с образованием молочной кислоты) и т. п.

Суммарное уравнение спиртового брожения:

С6Н1206 + 2АДФ + 2Н3Р04→2С2Н5ОН + 2АТФ + 2Н20 + 2С02.

Кислородный этап энергетического обмена (аэробное дыхание)

Происходит в митохондриях. Органические соединения, которые образовались в бескислородном этапе, окисляются до конечных продуктов (углекислого газа и воды). Соединения окисляются с отщеплением от них водорода.

С помощью веществ-переносчиков он передается кислороду с образованием воды. Этот процесс называется тканевым дыханием. При этом выделяется большое количество энергии, которое аккумулируется в связях АТФ.

В кислородном этапе можно выделить реакции цикла Кребса и те, что протекают на дыхательной цепи.

Цикл Кребса

В 1937 году английский биохимик X. Кребс открыл этот процесс. Происходит в матриксе митохондрий.

Начинается с реакции продукта гликолиза – пировиноградной кислоты с щавлевоуксусной. При этом образуется лимонная кислота, которая после целого ряда преобразований на другие кислоты, снова становится щавлевоуксусной. Щавлевоуксусная кислота снова вступает в реакцию с пировиноградной.

Во время реакций цикла Кребса образуются 4 пары атомов водорода и 2 молекулы углекислого газа. Углекислый газ выводится из клетки.

Дыхательная цепь

Кислородный этап энергетического обмена, Биология

Организация дыхательной цепи

Протекает на внутренних мембранах митохондрий, где расположен ряд ферментов в определенной последовательности (дыхательная цепь). Атомы водорода попадают на мембраны митохондрий. Через ряд этапов происходит с их помощью восстановление АТФ.

Высвобожденный в цикле Кребса водород объединяется с НАД (никотинамидадениндинуклеотидом). Образуется восстановленная форма НАД • Н.

Далее НАД • Н окисляется до НАД+ , Н+ и электрона (е) и транспортируется на внутреннюю поверхность мембраны митохондрий.

Ионы водорода накапливаются на внешней поверхности внутренней мембраны, а электроны с помощью переносчиков попадают на внутреннюю поверхность внутренней мембраны. На внутренней поверхности уменьшается количество ионов водорода, образуется вода:

4Н+ + 4 + 02 → 2Н20.

Возникает разница электрических потенциалов, концентраций ионов водорода по разные стороны внутренней мембраны.

АДФ и фосфорная кислота восстанавливают АТФ с помощью особой ферментной системы, которая использует для этого разницу электрических потенциалов, различие концентраций ионов водорода.

Эта ферментная система переводит ионы водорода на внутреннюю поверхность внутренней мембраны с внешней поверхности. Процесс образования АТФ из АДФ и фосфорной кислоты называется окислительным фосфорилированием.

Процесс перенесения электрона по дыхательной цепи митохондрий имеет название сопряжение окисления.

  • При окислении двух молекул молочной кислоты выделяется энергия, которая обеспечивает образование 36 молекул АТФ:
  • 2С3Н603 + 602 + 36АДФ + 36Н3Р04 → 6С02 + 36АТФ + 36Н20.
  • Суммарное уравнение энергетического обмена:
  • С6Н1206 + 602 + 38АДФ + 38Н3Р04 → 6С02 + 38АТФ + 44Н20.

Выделяется почти 2,8 тыс. кДж энергии. 1596 кДж (55 %) – запасается в виде макроэргических связей АТФ. Оставшиеся (45 %) рассеиваются в виде тепла.

Экскреция

Кислородный этап энергетического обмена, Биология

Экскреция

Экскреция — это выделение из организма продуктов обмена веществ, особенно азотосодержащих соединений (белков и т. п.). Жиры и углеводы расщепляются на воду и углекислый газ.

Аммиак выделяют прокариоты, растения и большинство водных животных. Он хорошо растворяется в воде.

Мочевую кислоту выделяет большинство наземных животных: насекомые, пресмыкающие, птицы. Она плохо растворяется в воде.

Мочевину выделяют грибы, хрящевые рыбы, взрослые земноводные, все млекопитающие. Хорошо растворяется в воде.

Гуанин выделяют паукообразные, частично – птицы.

Клеточный уровеньУровни организации живого

Биология ЕГЭ. Энергетический обмен. Вся теория + конспект

Приветствую друзья, давненько меня не было 🙂 , ох уж эта работа навалилось столько всего, что и не сосчитать, однако не стоит разглагольствовать, приступаем к биологии.

Тема у нас сегодня действительно очень важная и напрямую связана со статьей про метаболизм. Поехали.

На прошлом занятии мы с вами разобрали, что во всех живых организмов всё время происходят какие-то химические реакции, которые нужны для поддержания жизни и реагирования на изменения условий среды – это называется метаболизм (или обмен веществ).

Схема клеточного метаболизма (с) картинка из интернетаСхема клеточного метаболизма (с) картинка из интернета

Однако ничего не бывает просто так и организму нужно откуда-то получать как минимум 2 вещи: энергию и строительные материалы для жизни. Это как раз и называется умными словами энергетический обмен и пластический обмен.

Мы знаем, что живые организмы могут получать энергию (т.е питаться) разными способами. Они могут поедать друг друга (гететрофы) или создавать самостоятельно из света или химических веществ (автотрофы).

Типы питания. Фототрофы. Гетеротрофы. Хемотрофы. Миксотрофы (с) Типы питания. Фототрофы. Гетеротрофы. Хемотрофы. Миксотрофы (с)

Энергетический обмен

Давайте для начала разберём как получают энергию из уже готовых органических веществ. Осторожно дальше будет немного химии.

Подготовительный этап

Для того, чтобы получить из пищи энергию необходимо её немного подготовить. Занимается этим наша пищеварительная система. Мы измельчаем крупные куски пищи зубами, смачиваем их слюной, далее в желудке она обрабатывается кислотами и ферментами (веществами, которые разрушают её структуру) и поступает в кишечник.

На этом этапе мы ещё не получаем никакой энергии, вся она рассеивается в виде тепла (Q). Наш организм только подготавливает пищу и разрушает сложные соединения содержащиеся в ней на простые и доступные для усвоения в кишечнике.

Белки до аминокислотЖиры до глицерина и жирных кислот

Сложные углеводы до простых сахаров (глюкозы/фруктозы)

Если мы говорим просто про клетку, т.е. живой организм где нет пищеварительной системы, то этот процесс происходит в пищеварительной лизосоме.

Энергетический обмен (с) картинка из интернета Энергетический обмен (с) картинка из интернета

Читайте также:  Биология как наука, Биология

Бескислородный (анаэробный) этап

Далее те простые питательные вещества, что получились на подготовительном этапе подвергаются гликолизу. Чтобы не грузить вас химией просто скажу, что это процесс метаболизма глюкозы.

В результате этого процесса из 1 молекулы глюкозы образуется 2 молекулы пировиноградной кислоты (ПВК), она нам кстати понадобится дальше и 2 молекулы АТФ.

Если организм живёт в среде, где нет воздуха, то энергетический обмен тут и заканчивается, т.е. приходится довольствоваться всего 2 молекулами АТФ, однако если кислород всё-таки есть, то можно получить намного больше.

Кислородный (аэробный) этап

Во время кислородного этапа молекулы пировиноградной кислоты (ПВК), что образовались на бескислородном этапе распадаются до самого конца т.е. до углекислого газа (CO2) и воды (H2O) выделяя при этом 36 молекул АТФ (в 18 раз более эффективно, чем при отсутствии кислорода).

Получается суммарное уравнение энергетического обмена будет выглядеть вот так: C6H12O6 (глюкоза) +6O2 (кислород из атмосферы) =6CO2 (углекислый газ) +6H2O (вода) +38АТФ (2 на бескислородном этапе + 36 на кислородном).

Теперь понимаете почему нам нужно всё время дышать? Верно, для того, чтобы снабжать клетки кислородом для аэробного этапа энергетического обмен, ну и чтобы углекислый газ выводить, а то он токсичный.

Далее живой организм или клетка уже использует энергию запасённую в АТФ на различные процессы (деление, рост, развитие и т.д.)

Энергетический обмен сахаров очень важен и постоянно встречается в ЕГЭ. Необходимо четко понимать все процессы, запомнить где они протекают и сколько АТФ образуется на каждом из этапов. Чтобы тебе было удобнее я подготовил сжатый конспект, можешь скачать по ссылке с Яндекс Диска.

Конспект биология ЕГЭ. Метаболизм. Энергетический обмен. ФотосинтезКонспект биология ЕГЭ. Метаболизм. Энергетический обмен. ФотосинтезНе забудь поставить лайк и подписаться, это поддерживает мою веру в то, что я не просто так это всё делаю. Удачи и успехов.

Энергетический обмен в ЕГЭ по биологии ⋆ MAXIMUM Блог

Зачем мы дышим? Почему используем кислород, а выдыхаем углекислый газ? Это не просто интересные вопросы. Понимать, как устроен энергетический обмен, важно для ЕГЭ по биологии.

Вопросы по метаболизму могут встретится в нескольких заданиях принести до шести первичных баллов.

В этой статье обсудим, как происходит энергетический обмен — и разберем несколько заданий, чтобы научиться применять эти знания на практике.

Что такое энергетический обмен?

Для начала нужно разобраться, что такое энергетический обмен и какие у него есть особенности.

Уверена, что вы встречали в тестах слова «катаболизм» и «диссимиляция», эти названия являются синонимами термина «энергетический обмен», советую их запомнить.

Что же такое энергетический обмен? Это реакции, при которых органические вещества расщепляются, а энергия запасается клеткой в молекулах АТФ. Эту энергию клетка потом потратит на дальнейшую жизнедеятельность.

Такой тип обмена (как и все реакции метаболизма) идет поэтапно. В нем выделяют два или три основных этапа — это зависит от организации клетки и среды, в которой она обитает. Предлагаю рассмотреть каждый из этапов энергетического обмена подробнее.

Если хотите лучше понять не только энергетический обмен, но и другие темы ЕГЭ по биологии, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!

Этапы метаболизма

Первый этап — подготовительный. Здесь сложные органические вещества (полимеры) распадаются до более простых (мономеров). Например, белки распадаются до аминокислот, а полисахариды до моносахаридов.

Сами понимаете, что энергии при этом выделяется очень мало, она не запасается в молекулах АТФ, а выделяется в окружающую среду в виде тепла. Это знакомый нам процесс — пищеварение, он происходит в пищеварительной системе.

Что делать организмам, у которых пищеварительной системы нет? Они тоже осуществяют пищеварение, но другими способами. Например, у одноклеточных животных внутриклеточное пищеварение происходит в лизосомах и пищеварительных вакуолях.

Второй этап имеет сразу несколько названий. Например, бескислородный или анаэробный, так как он происходит без участия кислорода.

Еще одно название — гликолиз («глико» — сахар, «лизис» — расщепление).  Глюкоза расщепляется до двух молекул пировиноградной кислоты (ПВК), при этом энергия запасается в виде двух молекул АТФ.

  Легко запомнить: во время второго этапа выделяется две ПВК и две АТФ. Гликолиз проходит в цитоплазме клетки. 

Дальнейшая судьба ПВК зависит от кислорода — если он есть, начинается третий этап, а если его не хватает, ПВК превращается в молочную кислоту.

Например, в мышцах при высокой нагрузке и недостатке кислорода образуется молочная кислота. Человек испытывает неприятные ощущения, и даже боль.

А в клетках растений и некоторых грибов (яркий пример — дрожжи) при недостатке кислорода ПВК распадается до этилового спирта и углекислого газа — происходит спиртовое брожение.

У аэробных организмов проходит еще и третий этап. Кислородный этап или аэробный, проходит в кислородной среде, другое название — клеточное дыхание.

Он проходит только в эукариотических клетках, на кристах митохондрий. ПВК вступает в циклические реакции и полностью окисляется до углекислого газа и воды, а энергия запасается в 36 молекулах АТФ.

Сдаешь биологию? Тест по школьной программе для тебя!

Примеры заданий

Давайте разберем несколько заданий на энергетический обмен из ЕГЭ по биологии, чтобы закрепить знания на практике.

Пример 1. Что характерно для аэробного этапа энергетического процесса?

  1. протекает в лизосомах
  2. расщепляются молекулы ПВК
  3. наблюдается высокий выход молекул АТФ
  4. проходит в цитоплазме
  5. встречается у бактерий
  6. имеются циклические реакции

Решение. Аэробный или кислородный этап — третий этап энергетического обмена.

Он проходит на кристах митохондрий, там расположены ферментативные комплексы и идут циклические реакции, в которых молекулы пировиноградной кислоты разрушаются, на этом этапе наблюдается высокий выход энергии —36 АТФ.

В лизосомах проходит подготовительный этап, а в цитоплазме — гликолиз. Кислородный этап не характерен для бактерий, так как у них нет мембранных органоидов. 

Ответ: 236

Пример 2. Установите соответствие между характеристикой энергетического обмена и его этапом

ХАРАКТЕРИСТИКА ЭТАП ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
A) происходит в аэробных условияхБ) происходит в цитоплазмеB) образуется молочная кислотаГ) образуется пировиноградная кислотаД) синтезируется 36 молекул АТФ 1) гликолиз2) кислородное окисление

Решение. Гликолиз — второй этап энергетического обмена, анаэробный, проходит в цитоплазме, образуется пировиноградная кислота, а при недостатке кислорода еще и молочная кислота. Кислородный — третий этап, аэробный, завершается образованием 36 молекул АТФ.

Ответ: 21112

Пример 3. В процессе гликолиза образовались 64 молекулы пировиноградной кислоты (ПВК). Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при полном окислении глюкозы в клетках эукариот? Ответ поясните

Решение: 

  1. Во время гликолиза одна молекула глюкозы распадается до двух молекул пировиноградной кислоты. Для образования 64 молекул ПВК расщепилось 32 молекулы глюкозы (64:2).
  2. При полном окислении одной молекулы глюкозы в эукариотической клетке образуется 38 молекул АТФ. При расщеплении 32 молекул глюкозы образуется 1216 молекул АТФ (38*32). 

Как видите, энергетический обмен — важная часть ЕГЭ по биологии. Справиться с заданиями достаточно просто, если знать, что происходит на каждом из этапов.

Что нужно запомнить?

  • Энергетический обмен нужен, чтобы запасать энергию, расщепляя полимеры
  • Первый этап энергетического обмена — подготовительный. В пищеварительной системе и /или лизосомах, полимеры распадаются до мономеров, энергия расходуется в виде тепла
  • Второй этап — гликолиз. Проиходит в цитоплазме. Глюкоза распадается до 2 молекул ПВК, запасается 2 АТФ
  • Третий этап — клеточное дыхание. Происходит на кристах митохондрий. ПВК полностью окисляется, запасается 36 молекул АТФ
  • За три этапа клетка может получить 38 АТФ из одной молекулы глюкозы: 2  АТФ на втором и 36 АТФ на третьем

ЕГЭ по биологии — большой и сложный экзамен, который состоит из большого количества тем и заданий.

Но сдать его на высокий балл реально, если организовать систематическую подготовку. Обязательно приходите на бесплатную консультацию в MAXIMUM — там вы сможете построить индивидуальную стратегию подготовки к ЕГЭ и узнаете все подводные камни экзамена.

Ссылка на основную публикацию