Фотосинтез. Значение фотосинтеза. Световая и Темновая фазы фотосинтеза | Биология
Фотосинтез. Значение фотосинтеза.
Световая и Темновая фазы фотосинтеза
Фотосинтез – это совокупность процессов синтеза органических соединений из неорганических благодаря преобразованию световой энергии в энергию химических связей. К фототрофным организмам принадлежат зеленые растения, некоторые прокариоты – цианобактерии, пурпурные и зеленые серобактерии, растительные жгутиковые.
Исследования процесса фотосинтеза начались во второй половине XVIII века. Важное открытие сделал выдающийся русский ученый К. А. Тимирязев, который обосновал учение о космической роли зеленых растений.
Растения поглощают солнечные лучи и превращают световую энергию в энергию химических связей синтезированных ими органических соединений. Тем самым они обеспечивают сохранение и развитие жизни на Земле.
Ученый также теоретически обосновал и экспериментально доказал роль хлорофилла в поглощении света в процессе фотосинтеза.
Хлорофиллы являются основными из фотосинтезирующих пигментов. По структуре они похожи на гем гемоглобина, но вместо железа содержат магний. Содержание железа необходимо для обеспечения синтеза молекул хлорофилла.
Существует несколько хлорофиллов, которые отличаются своим химическим строением. Обязательным для всех фототрофов является хлорофилл а. Хлорофилл b встречается у зеленых растений, хлорофилл с – у диатомовых и бурых водорослей.
Хлорофилл d характерен для красных водорослей.
Зеленые и пурпурные фотосинтезирующие бактерии имеют особые бактериохлорофиллы. Фотосинтез бактерий имеет много общего с фотосинтезом растений.
Отличается он тем, что у бактерий донором водорода является сероводород, а у растений – вода. У зеленых и пурпурных бактерий нет фотосистемы II. Бактериальный фотосинтез не сопровождается выделением кислорода.
Суммарное уравнение бактериального фотосинтеза:
6С02 + 12H2S → C6H12O6+ 12S + 6Н20.
В основе фотосинтеза лежит окислительно-восстановительный процесс. Он связан с перенесением электронов от соединений-поставщиков электронов-доноров к соединениям, которые их воспринимают – акцепторам. Световая энергия превращается в энергию синтезированных органических соединений (углеводов).
На мембранах хлоропластов есть особые структуры – реакционные центры, которые содержат хлорофилла. У зеленых растений и цианобактерий различают две фотосистемы – первую (I) и вторую (II), которые имеют разные реакционные центры и связаны между собой через систему перенесения электронов.
Две фазы фотосинтеза
Состоит процесс фотосинтеза из двух фаз: световой и темновой.
Световая фаза фотосинтеза
Световая фаза фотосинтеза
Происходит лишь при наличии света на внутренних мембранах митохондрий в мембранах особых структур – тилакоидов. Фотосинтезирующие пигменты улавливают кванты света (фотоны).
Это приводит к «возбуждению» одного из электронов молекулы хлорофилла.
С помощью молекул-переносчиков электрон перемещается на внешнюю поверхность мембраны тилакоидов, приобретая определенную потенциальную энергию.
Этот электрон в фотосистеме I может возвратиться на свой энергетический уровень и восстанавливать ее. Может также передаваться НАДФ (никотинамидадениндинуклеотидфосфат). Взаимодействуя с ионами водорода, электроны восстанавливают это соединение. Восстановленный НАДФ (НАДФ • Н) поставляет водород для восстановления атмосферного С02 до глюкозы.
Подобные процессы происходят в фотосистеме II. Возбужденные электроны могут передаваться фотосистеме I и восстанавливать ее.
Восстановление фотосистемы II происходит за счет электронов, которые поставляют молекулы воды. Молекулы воды расщепляются (фотолиз воды) на протоны водорода и молекулярный кислород, который выделяется в атмосферу.
Электроны используются для восстановления фотосистемы II. Уравнение фотолиза воды:
2Н20 → 4Н+ + 02 + 2е.
При возвращении электронов из внешней поверхности мембраны тилакоидов на предыдущий энергетический уровень выделяется энергия.
Она запасается в виде химических связей молекул АТФ, которые синтезируются во время реакций в обеих фотосистемах.
Процесс синтеза АТФ с АДФ и фосфорной кислотой называется фотофосфорилированием. Некоторая часть энергии используется для испарения воды.
Во время световой фазы фотосинтеза образуются богатые энергией соединения: АТФ и НАДФ • Н. При распаде (фотолизе) молекулы воды в атмосферу выделяется молекулярный кислород.
Темновая фаза фотосинтеза
Темновая фаза фотосинтеза
Реакции протекают во внутренней среде хлоропластов. Могут происходить как при наличии света, так и без него. Синтезируются органические вещества (С02 восстанавливается до глюкозы) с использованием энергии, которая образовалась в световой фазе.
Процесс восстановления углекислого газа является циклическим и называется циклом Кальвина. Назван в честь американского исследователя М. Кальвина, который открыл этот циклический процесс.
Начинается цикл с реакции атмосферного углекислого газа с рибулезобифосфатом. Катализирует процесс фермент карбоксилаза.
Рибулезобифосфат – это пятиуглеродный сахар, соединенный с двумя остатками фосфорной кислоты. Происходит целый ряд химических преобразований, каждое из которых катализирует свой специфический фермент.
Как конечный продукт фотосинтеза образуется глюкоза, а также восстанавливается рибулезобифосфат.
Суммарное уравнение процесса фотосинтеза:
6С02 + 6Н20 → С6Н12О6 + 602
Значение фотосинтеза
Значение фотосинтеза
Благодаря процессу фотосинтеза поглощается световая энергия Солнца и происходит преобразование ее в энергию химических связей синтезированных углеводов. По цепям питания энергия передается гетеротрофным организмам.
В процессе фотосинтеза поглощается углекислый газ и выделяется кислород. Весь атмосферный кислород имеет фотосинтетическое происхождение. Ежегодно выделяется свыше 200 млрд. тонн свободного кислорода.
Кислород защищает жизнь на Земле от ультрафиолетового излучения, создавая озоновый экран атмосферы.
Процесс фотосинтеза малоэффективен, так как в синтезированное органическое вещество переводится лишь 1-2 % солнечной энергии. Связано это с тем, что растения недостаточно поглощают свет, часть его поглощается атмосферой и т. п. Большая часть солнечного света отражается от поверхности Земли назад в космос.
Клеточный уровеньУровни организации живого
Источник: https://xn—-9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/fotosintez-znachenie-fotosinteza-svetovaya-i-temnovaya-fazy-fotosinteza/
Темновая фаза фотосинтеза — Науколандия
Темновая фаза фотосинтеза заключается в синтезе органических веществ за счет АТФ и НАДФ·H2, полученных в световую фазу. Более точно: в темновую фазу происходит связывание углекислого газа (CO2).
Процесс этот многоступенчатый, в природе существуют два основных пути: C3-фотосинтез и C4-фотосинтез. Латинская буква C обозначает атом углерода, цифра после нее — количество атомов углерода в первичном органическом продукте темновой фазы фотосинтеза.
Так в случае C3-пути первичным продуктом считается трехуглеродная фосфоглицериновая кислота, обозначаемая как ФГК.
В случае C4-пути первым органическим веществом при связывание углекислого газа является четырехуглеродная щавелевоуксусная кислота (оксалоацетат).
C3-фотосинтез также называется циклом Кальвина в честь изучившего его ученого. C4-фотосинтез включает в себя цикл Кальвина, однако состоит не только из него и называется циклом Хэтча-Слэка. В умеренных широтах обычны C3-растения, в тропических — C4.
Темновые реакции фотосинтеза протекают в строме хлоропласта.
Цикл Кальвина
Первой реакцией цикла Кальвина является карбоксилирование рибулозо-1,5-бифосфата (РиБФ). Карбоксилирование — это присоединение молекулы CO2, в результате чего образуется карбоксильная группа -COOH. РиБФ — это рибоза (пятиуглеродный сахар), у которой к концевым атомам углерода присоединены фосфатные группы (образуемые фосфорной кислотой):
Химическая формула РиБФ
Реакция катализируется ферментом рибулозо-1,5-бифосфат-карбоксилаза-оксигеназа (РуБисКО).
Он может катализировать не только связывание углекислого газа, но и кислорода, о чем говорит слово «оксигеназа» в его названии.
Если РуБисКО катализирует реакцию присоединения кислорода к субстрату, то темновая фаза фотосинтеза идет уже не по пути цикла Кальвина, а по пути фотодыхания, что в принципе является вредным для растения.
Катализ реакции присоединения CO2 к РиБФ происходит в несколько шагов. В результате образуется неустойчивое шестиуглеродное органическое соединение, которое тут же распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК).
Химическая формула фосфоглицериновой кислоты
Далее ФГК за несколько ферментативных реакций, протекающих с затратой энергии АТФ и восстановительной силы НАДФ·H2, превращается в фосфоглицериновый альдегид (ФГА), также называемый триозофосфатом.
Меньшая часть ФГА выходит из цикла Кальвина и используется для синтеза более сложных органических веществ, например глюкозы. Она, в свою очередь, может полимеризоваться до крахмала.
Другие вещества (аминокислоты, жирные кислоты) образуются при участии различных исходных веществ. Такие реакции наблюдаются не только в растительных клетках.
Поэтому, если рассматривать фотосинтез как уникальное явление содержащих хлорофилл клеток, то он заканчивается синтезом ФГА, а не глюкозы.
Большая часть молекул ФГА остается в цикле Кальвина. С ним происходит ряд превращений, в результате которых ФГА превращается в РиБФ. При этом также используется энергия АТФ. Таким образом, РиБФ регенерируется для связывания новых молекул углекислого газа.
Цикл Хэтча-Слэка
У многих растений жарких мест обитания темновая фаза фотосинтеза несколько сложнее. В процессе эволюции C4-фотосинтез возник как более эффективный способ связывания углекислого газа, когда в атмосфере возросло количество кислорода, и РуБисКО стал тратиться на неэффективное фотодыхание.
У C4-растений существует два типа фотосинтезирующих клеток. В хлоропластах мезофилла листьев происходит световая фаза фотосинтеза и часть темновой, а именно связывание CO2 с фосфоенолпируватом (ФЕП). В результате образуется четырехуглеродная органическая кислота.
Далее эта кислота транспортируется в хлоропласты клеток обкладки проводящего пучка. Здесь от нее ферментативно отщепляется молекула CO2, которая далее поступает в цикл Кальвина.
Оставшаяся после декарбоксилирования трехуглеродная кислота — пировиноградная — возвращается в клетки мезофилла, где снова превращается в ФЕП.
Хотя цикл Хэтча-Слэка более энергозатратный вариант темновой фазы фотосинтеза, но фермент связывающий CO2 и ФЕП более эффективный катализатор, чем РуБисКО. Кроме того, он не вступает в реакцию с кислородом.
Транспорт CO2 с помощью органической кислоты в более глубоколежащие клетки, к которым затруднен приток кислорода, приводит к тому, что концентрация углекислого газа здесь увеличивается, и РуБисКО почти не расходуется на связывание молекулярного кислорода.
Источник: https://scienceland.info/biology10/photosynthesis-dark-phase
Темновая фаза фотосинтеза
За световой фазой следует темновая фаза фотосинтеза, во время которой происходит синтез моносахаридов (глюкозы) из углекислого газа с затратой энергии АТФ и восстановительных эквивалентов (НАДФН).
Синтез глюкозы является результатом целого ряда последовательных ферментативных реакций, которые назвали циклом Кальвина.
Как было сказано ранее в разделе «Кислородный этап энергетического обмена», в цикле Кребса в митохондриях от молекул органических кислот отрываются молекулы углекислого газа (CO2), промежуточные продукты цикла последовательно окисляются, отрываемые от них атомы водорода присоединяются к НАД+ (т.е. образуется НАДН). В цикле Кальвина происходит все наоборот, к молекулам субстрата присоединяется молекулы углекислого газа (СО2), и они восстанавливаются за счет НАДФН (т.е образуется НАДФ+).
Началом синтеза глюкозы является присоединение молекулы углекислого газа к молекуле пятиуглеродного сахара – рибулозо-1,5-бисфосфата.
При этом образуется шестиуглеродная молекула, которая сразу же распадается на две молекулы трехуглеродной фосфоглицериновой кислоты, которая восстанавливается до трехуглеродных сахаров с затратой АТФ и НАДФН.
В результате их дальнейших перестроек и конденсаций образуются рибулозомонофосфат и глюкоза — конечный продукт фотосинтеза. Рибулозомонофосфат фосфорилируется АТФ до рибулозобисфостата, который вновь вступает в цикл Кальвина.
На образование одной молекулы глюкозы затрачивается 18 молекул АТФ и 12 молекул НАДФН, накопленных в процессе световой фазы фотосинтеза. Следовательно, для темновой фазы фотосинтеза можно представить следующее общее уравнение:
6СО2 + 12НАДФН + 12Н+ + 18АТФ —> С6Н12О6 + 6Н2О + 12НАДФ+ + 18АДФ + 18Фн
Даже если учесть частичные потери энергии на различных стадиях темновой фазы, общий КПД фотосинтеза остается очень высоким и составляет приблизительно 60%.
У некоторых растений (например, сахарного тростника или кукурузы) процесс фотосинтеза идет вначале не через трехуглеродные, а через четырехуглеродные соединения. Эти растения называются С4-растениями.
В отличие от С3-растений им характерен быстрый рост и высокая эффективность фотосинтеза, который протекает даже при очень низких концентрациях углекислого газа. В этом случае углекислый газ присоединяется не к рибулозобисфосфату, а к одному из промежуточных продуктов гликолиза – фосфоенолпирувату.
В результате образуются четырехуглеродные яблочная или аспарагиновая кислоты, которые диффундируют в клетки обкладки сосудистых пучков, где от них отщепляется СО2, вступая в цикл Кальвина.
В этих клетках слабо выражено фотодыхание, связанное с окислением рибулозобисфосфата кислородом, поэтому энергозатраты на фотосинтез резко снижаются (на 50%). В последние годы благодаря необычайно высокой биологической продуктивности С4-растения привлекают внимание ученых как потенциальный источник органического сырья.
Перейти к оглавлению.
Источник: http://www.studentguru.ru/dark-phase.html
Фазы фотосинтеза – описание и таблица
Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.
При этом необходимо наличие энергии солнечного света.
Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:
Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.
Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».
Световая фаза фотосинтеза
Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.
Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.
Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.
В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов).
Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации).
А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:
- синтез АТФ;
- создание НАДФ·Н2;
- образование свободного кислорода.
Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.
Темная фаза фотосинтеза
Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.
Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.
Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ•Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.
Фазы фотосинтеза: таблица сравнений
Критерии сравнения | Световая фаза | Темная фаза |
Солнечный свет | Обязателен | Необязателен |
Место протекание реакций | Граны хлоропласта | Строма хлоропласта |
Зависимость от источника энергии | Зависит от солнечного света | Зависит от АТФ и НАДФ•Н2, образованных в световой фазе и от количества СО2 из атмосферы |
Исходные вещества | Хлорофилл, белки-переносчики электронов, АТФ-синтетаза | Углекислый газ |
Суть фазы и что образуется | Выделяется свободный О2, образуется АТФ и НАДФ•Н2 | Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы |
Фотосинтез — видео
Источник: https://life-students.ru/fazy-fotosinteza-opisanie-i-tablica/
Фотосинтез – основные фазы, процесс и реакция, образующиеся продукты при фотосинтезе
Фотосинтез представляет собой биосинтез, состоящий в превращении световой энергии в органические соединения. Свет в виде фотонов захватывается цветным пигментом, связанным с неорганическим или органическим донором электронов, и позволяет использовать минеральный материал для синтеза (производства) органических соединений.
Иными словами, что такое фотосинтез – это процесс синтеза органического вещества (сахара) из солнечного света. Эта реакция происходит на уровне хлоропластов, которые являются специализированными клеточными органеллами, и позволяют потреблять углекислый газ и воду для получения диоксигена и органических молекул, таких как глюкоза.
Фазы фотосинтеза
Он происходит в две фазы:
Световая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).
Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом.
В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода.
Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.
Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотидфосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.
То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза — сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.
Этот цикл существует в водорослях, умеренных растениях и всех деревьях; эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).
В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.
Как происходит фотосинтез
Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис;
- мезофилл;
- сосудистый пучок (вены);
- устьица.
Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.
Устьица — это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.
Механизм фотосинтеза очень сложный. Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.
Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода.
Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.
Формула этого процесса:
6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6
Вода + углекислый газ + свет = кислород + глюкоза
- Н 2 О = вода
- СО 2 = диоксид углерода
- O 2 = Кислород
- С 6 Н 12 О 6 = глюкоза
В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе.
Глюкоза — это глюкоза, которую растение использует в качестве исходного материала для синтеза жиров и белков.
Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.
Основные продукты фотосинтеза
Как уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы; вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.
При фотосинтезе синтезируются не только углеводы, как это когда-то считалось, но также:
- аминокислоты;
- белки;
- липиды (или жиры);
- пигменты и другие органические компоненты зелёных тканей.
Минералы поставляют элементы (например, азот, N; фосфор, Р; серы, S), необходимых для образования этих соединений.
Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения.
Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи.
Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.
Факторы, влияющие на скорость фотосинтеза
Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.
Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.
Место фотосинтеза
Фотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.
Вода, необходимая для фотосинтеза, транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света.
После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал.
Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.
Важность фотосинтеза в биологии
Из света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.
Благодаря этому процессу растения играют незаменимую роль на поверхности Земли; на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.
Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи; не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.
Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.
То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.
Источник: https://obrazovanie.guru/nauka/protsess-fotosinteza-v-biologii.html
§ 27. Фотосинтез
Понятие фотосинтеза. Для живых организмов Земли основным источником энергии является солнечный свет, благодаря которому прямо или косвенно удовлетворяются их энергетические потребности.
В процессе фотосинтеза растения, водоросли, цианобактерии с помощью специальных пигментов поглощают солнечную энергию и преобразуют ее в энергию химических связей органических веществ. При этом исходными соединениями для синтеза органических веществ служат бедные энергией неорганические вещества — углекислый газ и вода.
Таким образом, фотосинтез (от греч. фотос — свет) — это процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.
Фотосинтетические пигменты — это органические вещества, способные поглощать энергию света. При этом они поглощают свет определенной длины волны, а другие световые волны отражают. Различают три класса фотосинтетических пигментов — хлорофиллы, каротиноиды и фикобилины.
Наиболее важными пигментами являются хлорофиллы (от греч. хлорос — зеленый, фил-лон — лист). Известно несколько форм хлорофилла (а, 6, с и др.), различающихся строением молекул. Все хлорофиллы интенсивно поглощают красный и синий свет, а зеленый отражают, что и определяет зеленую окраску этих пигментов, а следовательно, и листьев растений.
Другую группу фотосинтетических пигментов составляют ка р оти н о и ды (от лат. карота — морковь), имеющие различную окраску — оранжевую, желтую, красную и др. Они содержатся в хлоропластах и хромопластах.
Осенью, когда хлорофиллы разрушаются, каротиноиды становятся хорошо заметными (листья меняют окраску). Каротиноиды поглощают свет, недоступный другим пигментам, и передают поглощенную энергию хлорофиллам.
Для красных водорослей и цианобактерий, кроме хлорофиллов, характерны также фикобилины (от греч. фи кос — водоросль и лат. билис — желчь). Эти пигменты имеют красную или синюю окраску и способны поглощать зеленый, синий и фиолетовый свет, проникающий в глубину морей и океанов.
Образованные в ходе фотосинтеза органические соединения являются не только источником энергии, но и источником атомов углерода, водорода и кислорода для синтеза веществ, необходимых организму при построении новых клеток и структур. Значительная часть продуктов фотосинтеза может преобразовываться и запасаться в виде крахмала, жиров или белков.
У растений и водорослей фотосинтез осуществляется в специальных органоидах — хлоропластах. Вы уже знаете, что внутренняя мембрана хлоропластов образует тилакоиды — плоские мешочки, уложенные в стопки (граны). В мембранах тилакоидов расположены особые пигмент-белковые комплексы — фотосистемы.
Существует два типа фотосистем — фотосистема I и фотосистема II. В состав каждой входит светособирающая антенна, образованная молекулами пигментов, реакционный центр и переносчики электронов.
Светособирающая антенна функционирует наподобие воронки: молекулы пигментов поглощают свет и передают всю собранную энергию в реакционный центр, где находится молекула-ловушка, представленная хлорофиллом а (рис. 63).
Поглотив энергию, молекула-ловушка переходит в возбужденное состояние и отдает один из своих электронов специальному переносчику, т. е. окисляется.
Главное различие фотосистем заключается в том, что в состав фотосистемы II входит особый ферментный комплекс, осуществляющий на свету фотолиз воды —расщепление молекул воды с образованием кислорода (02), электронов и протонов (Н+):
2Н20 ->• 02 + 4ё + 4Н+.
Полученные при этом электроны используются фотосистемой II для восстановления молекулы-ловушки в реакционном центре. В фотосистеме I отсутствует подобный ферментный комплекс, и, следовательно, она не способна использовать воду в качестве источника электронов для восстановления своей молекулы-ловушки.
Фотосинтез происходит в две фазы — световую и темновую (рис. 64). Световая фаза осуществляется на мембранах тилакоидов и только при наличии света. Реакции темновой фазы протекают в строме хлоропласта и не требуют с в ета, однако для их прохождения необходимы продукты световой фазы. Поэтому темновая фаза идет практически одновременно со световой.
Световая фаза фотосинтеза. Процессы, протекающие в световой фазе, можно представить следующим образом.
1. Пигменты обеих фотосистем поглощают свет, полученная энергия передается в реакционные центры на молекулы хлорофилла а (молекулы-ловушки), которые переходят в возбужденное состояние и отдают электроны переносчикам.
Электрон из фотосистемы I транспортируется переносчиками на внешнюю сторону тилакоида. Электрон из фотосистемы II с помощью переносчиков доставляется в фотосистему I и восстанавливает молекулу-ловушку в реакционном центре. Так фотосистема I восстанавливается за счет электронов из фотосистемы II, которая, в свою очередь, получает электроны, как вы уже знаете, за счет фотолиза воды.
Кислород, который образуется при фотолизе воды, выделяется из хлоропласта в гиалоплазму клетки, затем в окружающую среду, а протоны (Н+) накапливаются внутри тилакоида.
2. Накопление протонов внутри тилакоида ведет к возникновению электрохимического потенциала на его мембране. В мембране тилакоида содержится фермент АТФ-синтетаза. Когда концентрация протонов достигает определенного уровня, они устремляются в строму хлоропласта, проходя через специальные каналы АТФ-синтетазы. При этом АТФ-синтетаза использует энергию движения протонов для синтеза АТ Ф.
3. На внешней стороне тилакоида происходит восстановление НАДФ+ за счет присоединения к нему электронов и протонов. НАДФ — никотинамид-адениндинуклеотидфосфат (полное название приводится не для запоминания) — переносчик атомов водорода в процессе фотосинтеза.
НАДФ+ + 2ё + 2Н+ ->• НАДФ-Н+Н+.
Таким образом, в ходе световой фазы энергия света поглощается и преобразуется в энергию макроэргических связей АТФ, происходит расщепление воды с выделением кислорода и накопление атомов водорода (в форме НАДФ'Н+Н+). Продуктами световой фазы фотосинтеза являются АТФ, восстановленный НАДФ и кислород. Кислород — побочный продукт фотосинтеза, он выделяется в окружающую среду. АТФ и НАДФ*Н+Н+ используются в темновой фазе фотосинтеза.
Темповая фаза фотосинтеза. Из окружающей среды в хлоропласта поступает углекислый газ, а в строме хлоропластов происходит его восстановление до органических веществ. Это сложный многоступенчатый процесс, который можно выразить общим уравнением:
6С02 + 12НАДФ-Н+Н+ + 18АТФ ->• С6Н1206 + 12НАДФ+ + 18АДФ + 18Н3Р04.
Из приведенного уравнения видно, что для синтеза одной молекулы глюкозы необходимо окислить 12 молекул НДДФ*Н+Н+ (служит источником атомов водорода) и расщепить 18 молекул АТФ (служит источником энергии для синтеза глюкозы). Таким образом, в темновой фазе фотосинтеза энергия макроэргиче-ских связей АТФ преобразуется в энергию химических связей органических веществ.
В темновой фазе фотосинтеза, как уже отмечалось ранее, используются продукты световой фазы (НАДФ'Н+Н+и АТФ), поэтому реакции темновой фазы проходят почти одновременно с реакциями световой фазы. Если объединить процессы, протекающие в обеих фазах, исключив все промежуточные стадии и вещества, можно получить суммарное уравнение процесса фотосинтеза:
свет
6С02 + 6Н20-> С6Н1206 + 602.
пигменты
Значение фотосинтеза. Уникальность и биологическое значение фотосинтеза определяются тем, что жизнь на нашей планете всем своим существованием обязана этому процессу.
Фотосинтез является основным источником питательных веществ для живых организмов, а также единственным поставщиком свободного кислорода на Земле.
Из кислорода сформировался и поддерживается озоновый слой, защищающий живые организмы Земли от губительного воздействия коротковолнового ультрафиолетового излучения. Кроме того, благодаря фотосинтезу поддерживается относительно постоянное содержание С02 в атмосфере.
В изучение процесса фотосинтеза, раскрытие его механизма большой вклад внесли ученые разных стран: выдающийся русский ученый К- А. Тимирязев, американец М. Кальвин, австралийцы М. Д. Хетч и Р. Ч. Слэк, а также белорусские ученые Т. Н. Годнев и А. А. Шлык.
1. Фотосинтез относится к процессам пластического или энергетического обмена? Почему?
2. В каких органоидах растительной клетки происходит фотосинтез? Что представляет собой фотосистема? Какую функцию выполняют фотосистемы?
3. Каково значение фотосинтеза на Земле? Почему без фототрофных организмов существование биосферы было бы невозможным?
4. Охарактеризуйте световую и темновую фазы фотосинтеза по плану: 1) место протекания; 2) исходные вещества; 3) происходящие процессы; 4) конечные продукты. Какие продукты световой фазы фотосинтеза используются в темновой фазе?
5. Сравните фотосинтез и аэробное дыхание. Укажите черты сходства и различия.
6. Человек за сутки потребляет примерно 430 г кислорода. Дерево средней величины поглощает около 30 кг углекислого газа в год. Сколько деревьев необходимо, чтобы обеспечить одного человека кислородом?
7. Исследователи разделили растения пшеницы на две группы и выращивали их в лаборатории в одинаковых условиях, за исключением того, что растения первой группы освещали красным светом, а растения второй группы — зеленым. У растений какой группы фотосинтез протекал более интенсивно? С чем это связано?
8. С помощью какого эксперимента можно доказать, что кислород, выделяющийся при фотосинтезе, образуется именно из молекул воды, а не из молекул углекислого газа или какого-либо другого вещества?
Биология: учеб. для 10-го кл. учреждений общ. сред, образования с рус. яз. обуч. / Н. Д. Лисов [и др.]; под ред. Н. Д. Лисова. — 3-е изд., перераб. — Минск : Народная асвета, 2014. — 270 с.: ил.
Источник: https://botana.cc/uchebnik/biologiya/10/by001/p027.html
Темновая фаза фотосинтеза. Хемосинтез
В темновую фазу фотосинтеза энергия, накопленная клетками в молекулах АТФ, используется на синтез глюкозы и других органических веществ. Глюкоза образуется при восстановлении углекислого газа — СО2; с участием протонов воды и НАДФ•Н.
В молекуле углекислого газа содержится один атом углерода, а в молекуле глюкозы их шесть (C6H12O6). Как же из одноуглеродного вещества образуется шестиуглеродная молекула глюкозы?
Углекислота, проникающая в лист из воздуха, вначале присоединяется к органическому веществу, состоящему из пяти углеродных атомов. При этом образуется очень непрочное шестиуглеродное соединение, которое быстро расщепляется на две трехуглеродные молекулы.
В результате ряда реакций из двух трехуглеродных молекул образуется одна шестиуглеродная молекула глюкозы. Этот процесс включает ряд последовательных ферментативных реакций с использованием энергии, заключенной в АТФ.
Молекулы НАДФ•Н; поставляют ионы водорода, необходимые для восстановления углекислого газа.
*Для синтеза одной молекулы глюкозы (С6Н12O6) необходимо б молекул СО2 18 молекул АТФ и 24 протона.
Таким образом, в темновой фазе фотосинтеза в результате ряда ферментативных реакций происходит восстановление углекислого газа водородом воды до глюкозы.
Реакции световой и темновой фаз тесно взаимосвязаны: протоны молекул НАДФ•Н и энергия молекул АТФ, образовавшихся в световую фазу, используются в темновой фазе.
Но не только растения образуют органические вещества из неорганических. Существуют бактерии, которое, как и растения, автотрофы. Углерод эти бактерии получают также из углекислого газа, поступающего в клетки из окружающей среды.
Однако в качестве источника энергии они используют не энергию солнечного света, а энергию протекающих в их клетках химических реакций окисления различных неорганических соединений. Такой способ получения энергии и образования органических веществ называют хемосинтезом. Хемосинтез был открыт в конце прошлого века С.Н.Виноградским.
Этот процесс происходит в клетках серобактери 1000 й, железобактерий, нитрифицирующих бактерий и др.
Серобактерии — обитатели сернистых источников. В результате ряда реакций в клетках серобактерий накапливается сера, которая является энергетическим веществом. Сера образуется в результате окисления сероводорода. Когда энергии не хватает, сера окисляется с образованием серной кислоты: H2S ® S ® H2SO4. Энергия, освобождающаяся при окислении серы, используется для синтеза АТФ.
Железобактерии окисляют закисные соли железа до окисных: Fе2+ ® Fe3+ + энергия. Считают, что этим бактериям принадлежит важная роль в образовании некоторых месторождений железа.
Нитрифицирующие бактерии окисляют соединения азота: NH3 ® HNO2 ®HNO3 + энергия. Благодаря этим бактериям в почве образуются соли азотной кислоты, которые легко усваиваются растениями и используются ими для синтеза аминокислот и азотистых оснований.
Источник: http://www.AgroJour.ru/nauka/biologiya/temnovaya-faza-fotosinteza-khemosintez.html
Фотосинтез: все, что надо о нем знать
Содержание:
Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение кислорода, жизненно необходимого для существования жизни на нашей удивительной планете.
История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли.
А затем на протяжении пяти лет растение поливалось исключительно дождевой водой.
Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 65 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.
Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый).
Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой.
Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию.
Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).
Так был установлен факт, что зеленые части растений способны выделять кислород.
Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых органоидах растений – фактически была открыта еще одна сторона фотосинтеза.
Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.
И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.
Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.
Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость.
Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».
Общую формулу фотосинтеза можно записать следующим образом:
Вода + Углекислый газ + Свет > Углеводы + Кислород
А вот такой вид имеет формула химической реакции фотосинтеза
6СО2 + 6Н2О = С6Н12О6 + 6О2
А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям.
В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.
Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу листьев деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света.
Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит химическая реакция фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород.
Механизмы фотосинтеза являются гениальным творением природы.
Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.
Эта фаза осуществляется на мембранах тилакойдов. Что же такое эти тиалакойды? Тилакойды это структуры, находящиеся внутри хлоропластов и ограниченные мембраной.
Порядок процессов световой фазы фотосинтеза выглядит так:
- Свет попадает на молекулу хлорофилла, поглощается зеленым пигментом, чем приводит его в возбужденное состояние. Электрон, который входит в эту молекулу переходит на более высокий уровень и берет участие в процессе синтеза.
- Идет расщепление воды, во время которого протоны, под действием электронов преобразуются в атомы водорода, которые впоследствии расходуются на синтез углеводов.
- На последнем этапе световой фазы фотосинтеза происходит синтез АТФ (Аденозинтрифосфат). АТФ представляет собой органическое вещество, играющее роль своего рода аккумулятора энергии в биологических процессах.
Эта фаза фотосинтеза протекает в стромах хлоропластов. Именно в ее ходе происходит выделение кислорода, а также синтез глюкозы. Можно подумать исходя из названия, что темновая фаза фотосинтеза происходит исключительно в темное время суток. На самом деле это не так, синтез глюкозы происходит круглосуточно, просто на этом этапе энергия света больше не расходуется и попросту она не нужна.
И в завершение интересное образовательное видео про фотосинтез.
Источник: http://www.poznavayka.org/biologiya/fotosintez-vse-chto-nado-o-nem-znat/
Фазы фотосинтеза. Механизмы и связь между световой и темновой фазами фотосинтеза
Фотосинтез у зеленых растений – это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, совокупность которых принято подразделять на две фазы – световую и темновую.
Во время световой фазы фотосинтеза энергия солнечной радиации, поглощенная пигментными системами хлоропластов, преобразуется в электрохимическую.
Преобразование осуществляется путем переноса электронов и ионов водорода с помощью специальных переносчиков через мембрану тилакоидов. Такой перенос ионов Н+ и электронов выяснен еще не до конца. С позиции хемиосмотической теории П.
Митчелла в общих чертах его можно представить следующим образом.
При попадании кванта света на молекулу хлорофилла один из его электронов переходит на более высокий энергетический уровень, т. е. оказывается в возбужденном состоянии.
Возбужденный электрон может вернуться в основное состояние, и в этом случае его избыточная энергия выделяется в виде флуоресценции (красное свечение) или тепла, или же он передается в качестве энергии возбуждения другим молекулам. Кроме того, электрон может отрываться от молекулы хлорофилла.
В последнем случае электроны, обладающие запасом энергии, захватываются переносчиками, встроенными в мембрану, и парами переносятся на внешнюю сторону мембраны тилакоида.
Здесь электроны акцептируются коферментом НАДФ (никотинамидадениндинуклеотидфосфат), к которому присоединяется два протона из стромы и образуется НАДФ-восстановленный НАДФ ∙ H + H+:
НАДФ+ + 2e- + 2H+ → НАДФ ∙ H + H-.
Связывание протонов приводит к формированию отрицательного поля вокруг тилакоида.
Молекулы хлорофилла, утратившие электроны, являются сильными окислителями и заполняют «электронные дырки» электронами из молекул воды, находящихся внутри тилакоидов. Молекулы воды при этом разрушаются:
2H2O – 4e- → 4H+ + O2.
Этот процесс называется фотолизом, или фотоокислением воды. Благодаря фотолизу внутри тилакоида накапливаются положительно заряженные протоны H+ и образуется молекулярный кислород, который диффундирует в атмосферу.
Увеличение концентрации протонов внутри тилакоида осуществляется также благодаря активному закачиванию их из стромы, что сопряжено с транспортом электронов.
Таким образом, в результате поглощения хлорофиллом световой энергии и вызванного ею транспорта электронов на внутренней стороне мембраны тилакоидов создается электрохимический потенциал водорода (ΔμH+), имеющий две составляющие: концентрационную (ΔpH+), возникающую в результате неравномерного распределения H+ по разные стороны мембраны, и электрохимическую, обусловленную противоположными зарядами разных сторон мембраны тилакоида.
По мере накопления протонов на внутренней стороне тилакоида нарастает разность потенциалов и при достижении критической величины (150 мв) протоны начинают двигаться в строму через каналы фермента АТФ-синтетазы, встроенного в мембрану тилакоида. Энергия перехода H+ по протонному каналу используется для фосфорилирования имеющихся в матриксе молекул АДФ:
АДФ + Фн → АТФ.
Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях фиксации CO2.
Таким образом, в результате переноса электронов и протонов через мембрану тилакоида происходит превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ, а также образование сильного восстановителя НАДФ ∙ H + H+ и выделение свободного кислорода. Кислород, образующийся при фотолизе воды, является побочным продуктом фотосинтеза. Он может использоваться дальше растительными клетками для дыхания или выделяться в атмосферу.
Темновая фаза осуществляется в строме хлоропластов без непосредственного участия света. Это восстановление CO2 до уровня органических веществ за счет использования энергии АТФ и НАДФ ∙ H + H+, синтезированных во время световой фазы.
Восстановление молекул CO2 начинается с их фиксации молекулами пятиуглеродного сахара рибулозодифосфата. При взаимодействии рибулозодифосфата и CO2 образуется сначала нестойкое шестиуглеродное соединение, которое затем ферментативным путем распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК).
Дальнейшее превращение ФГК требует участия продуктов световой фазы фотосинтеза – АТФ и НАДФ ∙ H + H+. При восстановлении фосфоглицериновой кислоты образуется фосфоглицериновый альдегид (триозофосфат) – первый сахар.
В конечном итоге через ряд промежуточных соединений образуются шестиуглеродные сахара, а затем другие органические вещества (амино- и органические кислоты, нуклеотиды, спирты, в том числе глицерол и др.):
CO2 + C5 → C6 → 2C3
2C3 + АТФ + НАДФ ∙ H + H+ → 2C3 + АДФ + НАДФ + H3PO4.
Следует учесть, что в этих реакциях одновременно участвуют многие однотипные молекулы. На определенном этапе судьба трехуглеродных молекул ФГА может оказаться различной.
Одни из них соединяются друг с другом и образуют шестиуглеродные сахара (C6H12O6), которые, в свою очередь, могут полимеризоваться в крахмал, целлюлозу и другие макромолекулы или использоваться на энергетические нужды клетки. Другие молекулы ФГА идут на синтез аминокислот путем присоединения аминогрупп или на синтез карбоновых кислот, спиртов и т. д.
Наконец, третьи вовлекаются в длинный ряд реакций, которые приводят к превращению трехуглеродных молекул в молекулы исходного пятиуглеродного сахара – рибулозодифосфата, которые снова могут акцептировать диоксид углерода. Поскольку часть трехуглеродных конечных продуктов превращается в новые молекулы рибулозодифосфата, процесс фиксации углерода, по существу представляет собой цикл.
Его называют C3-циклом (по C3-продуктам) или циклом Кальвина – в честь ученого, открывшего этот процесс. Следует также отметить, что неорганические соединения, используемые в цикле Кальвина, поглощаются корнями растений в виде нитратов, фосфатов и сульфатов из почвы.
В темновой фазе фотосинтеза энергия макроэргических связей АТФ преобразуется в химическую энергию органических веществ, т. е. энергия как бы консервируется в химических связях между атомами органических соединений.
Если объединить реакции световой и темновой фазы, исключив все промежуточные этапы, то получается суммарное уравнение процесса фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2.
В изучение процесса фотосинтеза, раскрытие его механизма большой вклад внесли русский ученый К. А. Тимирязев, американцы М. Кальвин и Д. Арнон, австралийцы М. Д. Хетч и К. Р. Слэйк, белорусские ученые Т. Н. Годнев, А. А. Шлык.
Читать далее
Источник: http://ed-lib.ru/biology/28-fazy-fotosinteza-mehanizmy-i-svjaz-mezhdu-svetovoj-i-temnovoj-fazami-fotosinteza.html