Химические соединения клетки, Биология

Как вы уже знаете, все живые организмы состоят из клеток. А все клетки состоят из химических элементов.

  • На уроках химии в старших классах вы познакомитесь со всеми известными химическими элементами и таблицей Менделеева, которую в 1869 году изобрёл русский учёный-химик Дмитрий Иванович Менделеев.
  • Сегодня мы познакомим вас лишь с некоторыми веществами, которые составляют основу живых организмов.
  • Земная кора, например, наполовину состоит из кислорода.
  • Кислород — это простое вещество, которое при нормальных условиях представляет собой газ без цвета, вкуса и запаха.

На четверть земная кора состоит из кремния. Он обозначается символом Si (силициум). Кремний входит в состав песка.

Также в состав земной коры входит алюминий ― лёгкий металл серебристо-белого цвета, железо, кальций ― щёлочноземельный металл − и другие элементы.

А все живые организмы на 98 % состоят из четырёх основных элементов ― углерода, кислорода, водорода и азота. Относительное содержание этих химических элементов в живом веществе значительно выше, чем, например, в земной коре.

Химические соединения клетки, Биология

Как видим и живые организмы, и неживая природа содержат одинаковые химические элементы например кислород. Кстати, у человека массой 70 кг до 40 кг кислорода. То есть больше половины тела.

Итак, мы сказали, что все живые организмы на 98 % состоят из четырёх основных элементов: углерода, кислорода, водорода и азота.

Оставшиеся 2 % массы клетки приходятся на следующие элементы: калий, натрий, кальций, хлор, магний, железо, фосфор и серу. Остальные химические элементы (например, цинк и йод) содержатся в очень маленьких количествах.

В клетках живых существ найдено около 80 химических элементов. Соотношение химических элементов в живой и неживой природе различно.

Если мы внимательнее присмотримся к химическому составу живых организмов, то обнаружим, что разные организмы и даже клетки, выполняющие разные функции, могут существенно отличаться друг от друга. Например, лютики накапливают литий, ряска ― радий, а водоросли ― элемент, необходимый для нормального функционирования нашей щитовидной железы, ― йод.

Поговорим о биологической роли некоторых химических элементов.

Водород, кислород, углерод, азот ― это основа органических веществ клетки.

Водород как отдельный элемент не обладает биологической ценностью. Для организма важны соединения, в состав которых он входит, а именно: вода, белки, жиры, углеводы, и др. Наибольшую ценность, конечно, представляет соединение водорода с кислородом ― вода, которая является средой существования всех клеток организма.

Кислород участвует во многих реакциях организма. Образует «мокрое» вещество клетки ― воду.

Углерод ― самый важный химический элемент организма.

Химические соединения клетки, Биология

Благодаря своим уникальным химическим свойствам он составляет химическую основу жизни. Образуя связи с другими атомами, он составляет скелет различных по химическому составу, строению, длине и форме органических молекул. 

Азот ― простое вещество, газ без цвета, вкуса и запаха. Один из самых распространённых элементов на Земле.

Чистый азот сам по себе не обладает какой-либо биологической ролью.

Свои основные функции он выполняет в составе соединений: в составе белков (важных компонентов всех живых организмов), в составе ДНК (благодаря которой передается вся информация внутри клетки и по наследству), а также в составе гемоглобина крови. Гемоглобин — это белок, который связывается с кислородом и обеспечивает его перенос по кровяному руслу.

Кальций ― мягкий металл серебристо-белого цвета.Онвходит в состав костей и зубов. Участвует в нервной и мышечной деятельности, свёртываемости крови. У растений входит в состав клеточной стенки.

Фосфор также входит в состав органических веществ ― в основном, белков и нуклеиновой кислоты (ДНК). Кроме того, фосфор ― обязательная составляющая костей и зубной эмали.

Калий входит в состав всех клеток, обеспечивает проведение нервного импульса, а также регуляцию сердечной деятельности.

Натрий зачастую работает вместе с калием. А вместе с хлором натрий поддерживает осмотическое давление в клетке, которое делает ее прочной и упругой.

Магний входит в состав хлорофилла, необходимого для процессов фотосинтеза.

Фотосинтез — это процесс преобразования солнечной энергии в энергию химических связей органических веществ при участии фотосинтетических пигментов (хлоропластов). Этот процесс осуществляют зеленые растения.

Железо мы найдём в составе многих ферментов, которые ускоряют химические реакции в организме. Также железо находится в гемоглобине крови.

Неживая природа примерно на четверть состоит из кремния. Он участвует в формировании костей, а также входит в состав клеточной оболочки растений.

Цинк участвует в процессе, который регулирует содержание сахара в крови.

Медь у некоторых беспозвоночных животных (членистоногих, моллюсков) окрашивает жидкость, которая выполняет те же функции, что и кровь, в голубой цвет.

Фтор входит в состав зубной эмали. В нашем организме он накапливается в костной ткани.

Йод нужен для нормального функционирования щитовидной железы.

Кобальт ― принимает участие в процессах кроветворения.

Как мы видим, каждый химический элемент выполняет свою роль в живых организмах. Для одних функций необходимо высокое содержание определённого элемента, а для других ― низкое. Но абсолютно все они являются жизненно необходимыми.

Химические элементы соединяясь между собой, образуют неорганические и органические вещества.

Неорганические вещества клетки ― это вода и минеральные соли. Важнейшее из неорганических веществ − это вода. Больше всего воды содержится в клетках (от 40 до 95 % общей массы клетки). Вода придаёт клетке упругость, определяет ее форму, участвует в обмене веществ.

Приблизительно 1–1,5 % общей массы клетки составляют минеральные соли, в частности соли кальция, калия, фосфора и др.

А соединения азота, фосфора, кальция и другие неорганические вещества используются для синтеза органических молекул (белков, нуклеиновых кислот и др.)

Органические вещества входят в состав всех живых организмов. К ним относят углеводы, белки, жиры, нуклеиновые кислоты и другие вещества.

Белки играют важнейшую роль в жизни клеток. Они входят в состав разнообразных клеточных структур, регулируют процессы жизнедеятельности.

Химические соединения клетки, Биология

Белки переносят важные вещества по организму. Например, гемоглобин переносит кислород из лёгких к клеткам других тканей.

Специфические белки выполняют защитную функцию. Они защищают организм от вторжения чужеродных организмов и от повреждения. Например, на проникновение в организм чужеродных белков реагирует иммунная система.

Белки также являются источником энергии, при их расщеплении происходит ее выделение.

Углеводы ― это важная группа органических веществ, в результате расщепления, которых клетки также получают энергию, необходимую для их жизнедеятельности. Углеводы входят в состав оболочек клеток в виде целлюлозы, придавая им прочность.

Запасающие вещества в клетках ― крахмал и сахара − также относятся к углеводам.

Жиры откладываются в клетках. При их расщеплении также освобождается необходимая живым организмам энергия.

Химический состав клетки – таблица с элементами, свойства и роль — Природа Мира

Химические соединения клетки, Биология

Элементы – это основные единицы материи. Из 92 стабильных элементов, найденных на Земле, только 25 встречаются в организмах живых существах и 16–18 являются жизненно важными. Элементы, которые, как известно, имеют универсальное значение для всех живых организмов, включают водород (H), кислород (O), углерод (C), азот (N), кальций (Ca), фосфор (P), калий (K), серу (S), хлор (Cl), натрий (Na), магний (Mg) и железо (Fe).

Все элементы, которые входят в химический состав организма, в зависимости от их доли содержания в клетке, можно разделить на четыре группы:

Органогены (биоэлементы) – химические элементы, которые входят в состав всех органических соединений и составляют примерно 98% от массы клетки:

  • Водород – компонент воды и органических молекул
  • Углерод – основа органических молекул
  • Азот – компонент белков и нуклеиновых кислот
  • Кислород – необходим для клеточного дыхания

Макроэлементы – элементы, содержащиеся в клетке в значительно меньших количествах – десятые и сотые доли процента:

  • Натрий – важен в функционировании нервов
  • Магний – компонент хлорофилла
  • Фосфор – компонент нуклеиновых кислот, костей и зубов
  • Сера – компонент некоторых белков и витаминов
  • Хлор – главный анион в жидкостях вне клетки
  • Калий – важен в функционировании нервов
  • Кальций – кофактор ферментов, запускающий сокращение мышц и компонент костей, зубов и клеточных стенок растений

Микроэлементы – элементы, составляющие от 0,001% до 0,000001% массы живого организма:

  • Железо – кофактор многих ферментов и составная часть гемоглобина
  • Йод – участвует в обменных процессах

Ультрамикроэлементы – на их долю приходится менее 0,000001% от массы живого организма. К этой группе принадлежат золото, серебро, обладающие бактерицидным воздействием, ртуть, препятствующая обратному всасыванию воды в почечных канальцах, влияя на ферменты.

Химические соединения в клетке также могут быть разделены на две основные группы: органические и неорганические соединения.

Органические соединения являются химическими соединениями, которые содержат углерод. К органическим веществам в клетке относятся углеводы, белки, липиды и нуклеиновые кислоты. Некоторые из этих соединений синтезируются самой клеткой.

Вода – это неорганическое соединение, которое состоит из водорода и кислорода. Это важное вещество, но в клетке также содержится множество других химических элементов, с которыми мы ознакомимся в таблице ниже.

Таблица. Основные химические элементы в клетках живых организмов

Содержание элемента в процентном соотношенииНазвание элементаЗначение
65% Кислород Этот элемент, очевидно, является самым важным в клетках живых организмов. Атомы кислорода присутствуют в воде, которая является наиболее распространенным веществом в организме, и других соединениях, составляющих ткани. Он также содержится в крови и легких благодаря дыханию
18.6% Углерод Углерод содержится в каждой органической молекуле в организме, а также в побочных продуктах дыхания (углекислый газ). Обычно он попадает в организм вместе с пищей
9.7% Водород Содержится во всех молекулах воды в организме, а также во многих других соединениях, составляющих различные ткани
3.2% Азот Очень распространен в белках и органических соединениях. Он также присутствует в легких из-за его обилия в атмосфере
1.8% Кальций Является основным компонентом скелетной системы, включая зубы. Он также содержится в нервной системе, мышцах и крови
1.0% Фосфора Этот элемент распространен в костях и зубах, а также в нуклеиновых кислотах
0.4% Калий Калий содержится в мышцах, нервах и некоторых тканях живых организмов
0.2% Натрий Содержится в мышцах и нервах
0.2% Хлор Присутствует в коже и облегчает поглощение воды клетками
0.06% Магний Служит кофактором для различных ферментов в организме
0.04% Сера Присутствует во многих аминокислотах и белках
0.007% Железо Содержится в основном в крови, облегчает транспортировку кислорода
0.0002% Йод Встречается в гормонах в щитовидной железе, участвует в обменных процессах
Читайте также:  Приспособленность организмов и ее относительность, биология

Значение органических соединений в клетке

Углеводы:

  • Служат энергией для клеточных процессов
  • Средство накопления энергии
  • Обеспечивают структурную поддержку клеточным стенкам

Липиды:

  • Хранят большое количество энергии в течение длительного периода времени
  • Действуйте как источник энергии
  • Играют важную роль в структуре клеточных мембран
  • Являются источником метаболической воды
  • Сокращают потери воды при испарении

Белки:

  • Действуют как строительные блоки многих структурных компонентов клетки; необходимы для роста
  • Образуют ферменты, катализирующие химические реакции
  • Образуют гормоны, которые контролируют рост и обмен веществ

Нуклеиновые кислоты

  • Содержат генетическую информацию клеток
  • Играют жизненно важную роль в синтезе белка

Роль воды в клетке

  • Вода важна для жизни, потому что ее химические и физические свойства позволяют поддерживать жизнь
  • Вода – это полярная молекула, состоящая из 2 атомов водорода и 1 атома кислорода. Полярная молекула – это молекула с неравномерным распределением зарядов. Каждая молекула имеет положительно заряженный и отрицательно заряженный конец. Полярные молекулы притягивают друг друга так же, как и ионы. Из-за этого свойства вода является хорошим сильнополярным растворителем
  • Выступает транспортной средой в крови
  • Действует как среда для биохимических реакций
  • Вода помогает в поддержании стабильной внутренней среды в живом организме. Концентрация воды и неорганических солей, растворяющихся в воде, играет важную роль в поддержании осмотического баланса между кровью и интерстициальной жидкостью
  • Молекулы воды обладают очень высокой когезией (сплоченность). Молекулы воды имеют тенденцию прилипать друг к другу и перемещаться длинными непрерывными колоннами через сосудистые ткани растений

Не все нашли? Используйте поиск по сайту ↓ Химические соединения клетки, Биология

2.3 Химический состав клетки. Макро- и микроэлементы

Видеоурок 1: Химический состав клетки. Макро и микроэлементы. Роль химических веществ

Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

Химический состав клеткиОбнаружено, что в клетках живых организмов постоянно содержатся в виде нерастворимых соединений и ионов около 80 химических элементов. Все они подразделяются на 2 большие группы по своей концентрации:

  • макроэлементы, содержание которых не ниже 0,01%;
  • микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Макроэлементы:

  • Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.
  • Азот, кислород, водород, углерод. Это основные компоненты клетки.
  • Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.
  • Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.
  • Магний – компонент хлорофилла. Участвует в синтезе белков.
  • Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

  • Цинк – компонент инсулина;
  • Медь – участвует в фотосинтезе и дыхании;
  • Кобальт – компонент витамина В12;
  • Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;
  • Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

  • Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.
  • В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.
  • Неорганические вещества клетки
  • Вода. От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:
  • терморегуляции;
  • капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

  • переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;
  • формировании нервных импульсов, имеющих электрохимическую природу;
  • сокращении мышц;
  • свертывании крови;
  • входят в состав белков;
  • фосфат-ион – компонент нуклеиновых кислот и АТФ;
  • карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры. 

Основные классы, имеющиеся в живых организмах:

Углеводы. В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

  • Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.
  • Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.
  • Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.
  • Сахароза (дисахарид) – источник энергии, образуется в растениях.
  • Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.

Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям).

Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м.

Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон.

Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липиднуюструктуру. Жиры входят в основу структуры мембран.

Белки или протеины являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи.

Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи.

В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

  • первичная структура – аминокислотная цепочка;
  • вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;
  • третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;
  • четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Химические соединения клетки, Биология

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры. 

Белки выполняют в клетке множество функций:

  • ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);
  • транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;
  • защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.
  • структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;
  • регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;
  • энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.
Читайте также:  Микроскоп и лупа — приборы для изучения строения растений - биология

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано  в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы –нуклеотиды, имеющие принципиально общую структуру из:

  • фосфат-группы;
  • дезоксирибозы;
  • азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

  • вместо тиминового нуклеотида – урациловый;
  • рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

  • 3 остатка фосфорной кислоты;
  • аденин;
  • рибозу.

В результате каскадных химических процессов дыхания синтезируется в митохондриях. Основная функция – энергетическая, одна химическая связь в ней содержит почти столько же энергии, сколько получается при окислении 1 г жира.

Предыдущий урок Следующий урок

Химический состав клетки #48

Х Химический состав клетки составляют около 80 элементов таблицы Менделеева. Химический состав клетки определяет ее способность к жизнедеятельности и развитию организма в целом.

Содержание химических элементов в клетке

В клетках обнаружено более 80 химических элементов. Все элементы делят на три группы.

Макроэлементы, содержание которых в клетке составляет до 10-3%, – это кислород, углерод, водород, азот, фосфор, сера, кальций, натрий и магний; на их долю приходится свыше 99% массы клеток.

Микроэлементы, ссдержание которых колеблется от 10-3% до 10-6%. Это железо, марганец, медь, цинк, кобальт, никель, иод, фтор; на их долю приходится менее 1,0 % массы клеток.

Ультрамикроэлементы, составляющие менее 10-6% – это золото, серебро, уран, цезий, бром, ванадий, селен и др., на их долю приходится менее 0,01% массы клетки. Физиологическая роль установлена только для некоторых из них. Например, дефицит селена приводит к развитию раковых заболеваний.

Все перечисленные элементы входят в состав неорганических и органических веществ или содержатся в виде ионов.

Вода и минеральные соли

Неорганические соединения клеток представлены водой и минеральными солями.

Содержание воды в разных клетках зависит от интенсивности обменных процессов и колеблется от 10% в эмали зуба до 85% в нервных клетках и до 97% в клетках развивающегося зародыша. В среднем в теле многоклеточных содержится около 80% воды от массы тела.

Вода в клетках выполняет следующие функции:

  • связанная вода (4 — 5% от всего ее содержания) образует водные (сольватные) оболочки вокруг молекул белков, препятствуя склеиванию их друг с другом;
  • свободная вода является универсальным растворителем и способствует транспорту растворенных в ней веществ;
  • вода принимает непосредственное участие в реакциях гидролиза;
  • вода регулирует тепловой режим и осмотическое давление в клетках.

По отношению к воде все вещества делятся на гидрофильные (водорастворимые) – многие минеральные соли, кислоты, щелочи, моносахариды, белки, витамины (С и В) и гидрофобные (водонерастворимые) – жиры, полисахариды, некоторые соли, витамины (А, D).

Минеральные соли и химические элементы в определенных концентрациях необходимы для нормальной жизнедеятельности клеток.

Так, азот и сера входят в состав молекул белков, фосфор – в ДНК, РНК и АТФ, магний – во многие ферменты и хлорофилл, железо – в гемоглобин, цинк в гормон поджелудочной железы, иод – в гормоны щитовидной железы и т.д.

Нерастворимые соли кальция и фосфора обеспечивают прочность костной ткани, катионы натрия, калия и кальция – раздражимость клеток. Ионы кальция принимают участие в свертывании крови.

Липиды и углеводы

Органические соединения составляют около 20 — 30% массы живых клеток. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и полисахариды, а также липиды, гормоны, пигменты, АТФ и др.

Липиды (жиры) и липоиды являются обязательными компонентами всех клеток. Содержание жиров в клетке колеблется от 5 до 15% массы сухого вещества, а в клетках подкожной жировой клетчатки – до 90%.

Липиды представляют собой сложные эфиры высокомолекулярных жирных кислот и трехатомного спирта глицерина, а липоиды – жирных кислот с другими спиртами. Эти соединения нерастворимы в воде (гидрофобны).

Липиды могут образовывать сложные комплексы с белками (липопротеины), углеводами (гликолипиды), остатками фосфорной кислоты (фосфолипиды) и др.

Функции жиров:

  • строительная – жиры составляют основу биологических мембран;
  • энергетическая – жиры являются источником энергии;
  • запасающая – жиры откладываются в жировой ткани животных и в плодах и семенах растений и являются запасным источником энергии;
  • источник воды – при окислении жиров выделяется вода;
  • защитная – скопления жира выполняют теплоизоляционную и механическую защиту органов.

Углеводы – обязательный химический компонент клеток. В растительных клетках их содержание достигает 90% сухой массы (крахмал в клубнях картофеля), а в животных – 5% (гликоген в клетках печени). В состав молекул углеводов входят углерод, водород и кислород.

Все углеводы подразделяют на моно-, ди- и полисахариды. Моносахариды чаще содержат пять (пентозы) или шесть (гексозы) атомов углерода. Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот и АТФ. Гексозы (глюкоза и фруктоза) постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус.

Глюкоза содержится в крови и служит источником энергии для клеток и тканей животных. Дисахариды объединяют в одной молекуле два моносахарида. Пищевой сахар (сахароза) состоит из молекул глюкозы и фруктозы, молочный сахар (лактоза) включает глюкозу и галактозу. Все моно- и дисахариды хорошо растворимы в воде и имеют сладкий вкус.

Молекулы полисахаридов образуются в результате поликонденсации моносахаридов. Мономером полисахаридов – крахмала, гликогена, целлюлозы (клетчатки) является глюкоза. Полисахариды практически нерастворимы в воде и не обладают сладким вкусом.

Основные полисахариды – крахмал (в растительных клетках) и гликоген (в клетках животных) откладываются в виде включений и служат запасными энергетическими веществами. Целлюлоза образует стенку растительных клеток и выполняет защитную функцию.

Углеводы образуются в растениях в процессе фотосинтеза и могут использоваться в дальнейшем для биосинтеза аминокислот, жирных кислот и других соединений.

Углеводы выполняют четыре основные функции:

  1. строительную – образуют стенки растительных клеток;
  2. энергетическую – углеводы являются основным источником энергии;
  3. запасающую – углеводы откладываются в клетках в виде гликогена или крахмала и являются запасным источником энергии;
  4. защитную – целлюлоза в стенках клеток растений.

Белки

Белки составляют 10 — 18% от общей массы клетки. Молекулярная масса их колеблется от десятков тысяч до многих миллионов единиц. Белки – это биополимеры, мономерами которых являются 20 аминокислот.

Молекулы белков различаются по величине, структуре и функциям, которые определяются составом, количеством и порядком расположения аминокислот.

Помимо простых белков (альбумины, глобулины, гистоны) имеются и сложные – соединения белков с углеводами (гликопротеины), жирами (липопротеины) и нуклеиновыми кислотами (нуклеопротеины).

Каждая аминокислота состоит из углеводородного радикала, соединенного с карбоксильной группой, имеющей кислотные свойства (–СООН)‚ и аминогруппой (–NН2)‚ обладающей основными свойствами. Аминокислоты отличаются одна от другой только радикалами.

Они способны соединяться в длинные цепочки. При этом устанавливаются прочные ковалентные (пептидные) связи между углеродом кислотной и азотом основной групп (–СО–NН–) с выделением молекулы воды.

Соединения, состоящие из двух аминокислотных остатков, называются дипептидами, из трех – трипептидами, из многих – полипептидами.

Различные свойства и функции белковых молекул определяются последовательностью соединения аминокислот, которая закодирована в ДНК. Эту последовательность называют первичной структурой молекулы белка, от которой в свою очередь зависят последующие уровни ее пространственной организации и биологические свойства белков.

Вторичная структура белковой молекулы достигается ее спирализацией благодаря установлению между атомами соседних витков спирали водородных связей. Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков (фибриноген, миозин, экшн и др.).

Многие белковые молекулы становятся функционально активными только после приобретения глобулярной (третичной) структуры. Она формируется путем многократного сворачивания спирали в трехмерное образование – глобулу.

Эта структура поддерживается ковалентными дисульфидными (–S–S–) связями, гидрофобными взаимодействиями и электростатическими связями. Глобулярную структуру имеет большинство белков (альбумины, глобулины и др.).

Для выполнения некоторых функций требуется участие белков с более высоким уровнем организации, при котором возникает объединение нескольких глобулярных белковых молекул в единую систему – четвертичную структуру (химические связи могут быть разные – гидрофобные взаимодействия, водородные и ионные связи). Например, молекула гемоглобина состоит из четырех различных глобул и небелковой части – гема, содержащего железо.

Утрата белковой молекулой своей структурной организации называется денатурацией. Причиной ее могут быть различные химические (кислоты, щелочи, спирт, соли тяжелых металлов и др.) и физические (высокая температура и давление, ионизирующие излучения и др.) факторы.

Вначале разрушается четвертичная, затем третичная, вторичная, а при более жестких условиях и первичная структура (происходит деградация).

Читайте также:  Отдел голосеменные - биология

Если под действием денатурирующего фактора не затрагивается первичная структура, то при возвращении белковых молекул в нормальные условия среды их структура полностью восстанавливаетея, т.е. происхоцит ренатурация.

Свойства белков: гидрофильность, видовая специфичность, химическая активность, способность денатурировать и ренатурировать, переходить из золя в гель, изменять конфигурацию молекул под действием факторов среды.

Белки выполняют следующие функции:

  • строительную – входят в состав большинства клеточных структур;
  • каталитическую – все ферменты являются белками;
  • транспортную – переносят различные вещества, напригер гемоглобин, – O2;
  • двигательную – обусловливают сокращение мышц, жгутиков, ресничек;
  • защитную – выполняют антитела;
  • сигнальную (рецепторную) – белковые молекулы способны изменять свою структуру под действием различных факторов среды;
  • регуляторную – гормоны, имеющие белковую природу (инсулин);
  • энергетическую – белки являются источником энергии.

Каталитическую функцию в клетках выполняют белки-ферменты, в десятки и сотни тысяч раз ускоряющие течение биохимических реакций при нормальном давлении и температуре 37 °С.

Действие ферментов строго специфично: каждый фермент катализирует только одну реакцию, действует на одно вещество или один тип связи при определенной температуре и рН среды.

Высокая специфичность ферментов обусловлена наличием одного или нескольких активных центров, в которых происходит тесный контакт между молекулами фермента и субстратом (веществом, на которое действует данный фермент).

Нуклеиновые кислоты

Химические соединения клетки, БиологияСхема строения молекулы ДНК: Ф — остаток фосфорной кислоты; Д — дезоксирибоза; А,Г,Т,Ц — первые буквы названий азотистых оснований(аденин, гуанин, цитозин, тимин).

Нуклеиновые кислоты представляют собой сложные высокомолекулярные биополимеры, мономерами которых являются нуклеотиды.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). ДНК входит в основном в хроматин ядра, хотя небольшое ее количество содержится и в некоторых органоидах (митохондрии, пластиды). РНК содержится в ядрышках, кариолимфе, рибосомах, митохондриях, пластидах и в гиалоплазме клетки.

Структура молекулы ДНК была впервые расшифрована Дж. Уотсоном и Ф. Криком в 1953 г. Она представляет собой две полинуклеотидные цепи, соединенные друг с другом. Мономерами цепей являются нуклеотиды.

В состав каждого нуклеотида входят: пятиуглеродный сахар – дезоксирибоза, остаток фосфорной кислоты и одно из четырех азотистых оснований: аденин и гуанин (пуриновые основания), цитозин и тимин (пиримидиновые основания).

Нуклеотиды отличаются один от другого только азотистыми основаниями.

Нуклеотиды соединяются в цепочку путем образования фосфодиэфирных (ковалентных) связей между дезоксирибозой одного и остатком фосфорной кислоты другого, соседнего, нуклеотида. Молекулы ДНК могут содержать от 200 до 2 * 108 нуклеотидов.

Огромное разнообразие молекул ДНК достигается разным составом, количеством и различной последовательностью нуклеотидов.

Обе цепочки объединяются в одну молекулу ведородными связями, возникающими между азотистыми основаниями нуклеотидов противоположных цепочек, причем в виду определенной пространственной конфигурации между аденином и тимином устанавливаются две связи, а между гуанином и цитозином – три.

Вследствие этого нуклеотиды двух цепочек образуют пары: А — Т, Г — Ц . Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарностью (дополнительностью). Это свойство лежит в основе репликации (самоудвоения) молекулы ДНК.

Репликация молекулы ДНК происходит следующим образом. Под действием фермента (ДНК-полимераза) разрываются водородные связи между нуклеотидами двух цепочек и к освободившимся связям по принципу комплементарности присоединяются соответствующие нуклеотиды ДНК.

Следовательно, порядок нуклеотидов в «старой» цепочке ДНК определяет порядок нуклеотидов в «новой», т.е. «старая» цепочка ДНК является матрицей для синтеза «новой». Такие реакции называются реакциями матричного синтеза; они характерны только для живого.

Роль ДНК в клетке заключается в хранении, воспроизведении и передаче генетической информации. Благоларя матричному синтезу наследственная информация дочерних клеток точно соответствует материнской.

РНК, как и ДНК, представляет собой полимер, состоящий из мономеров – нуклеотидов.

Структура нуклеотидов РНК сходна с таковой ДНК, но имеет следующие отличия: вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар – рибоза, а вместо азотистого основания тимина – урацил.

По сравнению с ДНК в состав РНК входит меньше нуклеотидов, и, следовательно, ее молекулярная масса меньше. В клетках эукариот встречаются только одноцепочечные молекулы РНК.

Имеется три типа РНК: информационная, транспортная и рибосомальная.

Информационная РНК (и-РНК) состоит из 300 — 30000 нуклеотидов и составляет примерно 5% от всей РНК, содержащейся в клетке. Она представляет собой комплементарную копию определенного участка ДНК (гена). Молекулы и-РНК выполняют роль переносчиков генетической информации от ДНК к месту синтеза белка ( в рибосомы) и непосредственно участвуют в сборке его молекул.

Транспортная РНК (т-РНК) составляет до 10% от всей РНК клетки и состоит из 75 — 85 нуклеотидов. Молекулы т-РНК транспортируют аминокислоты из цитоплазмы в рибосомы.

Основную часть РНК цитоплазмы (около 85%) составляет рибосомальная РНК (р-РНК). Она входит в состав рибосом. Молекулы р-РНК состоят из 3 — 5 тыс. нуклеотидов. р-РНК обеспечивает определенное пространственное взаиморасположение и-РНК и т-РНК.

1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

Урок 5. химический состав клетки – Биология – 5 класс – Российская электронная школа

  • Биология, 5 класс
  • Урок 5. Химический состав клетки
  • Перечень вопросов, рассматриваемых на уроке:
  1. Урок посвящён изучению химического состава клетки.

  1. Ключевые слова:
  2. Клетка, химический состав, неорганические и органические вещества, вода, минеральные соли, белки, жиры, углеводы, нуклеиновые кислоты
  3. Тезаурус:
  4. Химический элемент – это атомы одного и того же вида.

  5. Органические вещества – это вещества, которые входят в состав живых организмов и образуются только при их участии.
  6. Неорганические вещества – это вещества, которые входят в состав неживой природы и могут образовываться без участия живых организмов.
  7. Обязательная и дополнительная литература по теме
  1. Биология. 5–6 классы.

    Пасечник В. В., Суматохин С. В., Калинова Г. С. и др. / Под ред. Пасечника В. В. М.: Просвещение, 2019

  2. Биология. 6 класс. Теремов А. В., Славина Н. В. М.: Бином, 2019.
  3. Биология. 5 класс. Мансурова С. Е., Рохлов В. С., Мишняева Е. Ю. М.: Бином, 2019.
  4. Биология. 5 класс. Суматохин С. В., Радионов В. Н. М.: Бином, 2014.
  5. Биология. 6 класс. Беркинблит М. Б.

    , Глаголев С. М., Малеева Ю. В., Чуб В. В. М.: Бином, 2014.

  6. Биология. 6 класс. Трайтак Д. И., Трайтак Н. Д. М.: Мнемозина, 2012.
  7. Биология. 6 класс. Ловягин С. Н., Вахрушев А. А., Раутиан А. С. М.: Баласс, 2013.

Теоретический материал для самостоятельного изучения

Сейчас на Земле известно более ста химических элементов. Из их атомов состоят все вещества, встречающиеся на Земле. 80 химических элементов обнаружены в составе живых организмов. При этом четыре из них – углерод, водород, азот и кислород составляют около 98 % массы любого организма. Остальные химические элементы встречаются в живых организмах в малых количествах.

Клетки всех живых организмов состоят из одних и тех же химических элементов. Эти же элементы входят и в состав объектов неживой природы. Сходство состава указывает на общность живой и неживой природы.

На этом уроке вы узнаете, из каких химических элементов состоят клетки живых организмов, и какие изменения претерпевают эти химические соединения по мере роста и развития клеток.

В клетках живых организмов больше всего содержится таких химических элементов, как углерод, водород, кислород и азот. Вместе они составляют до 98 % массы клетки. Около 2 % массы клетки приходится на восемь элементов: калий, натрий, кальций, хлор, магний, железо, фосфор и серу. Остальные химические элементы содержатся в клетках в очень малых количествах.

Химические элементы, соединяясь между собой, образуют неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, нуклеиновые кислоты и др.) вещества.

Значение каждого из веществ, содержащегося в клетке уникально. Вода придаёт клетке упругость, определяет её форму, участвует в обмене веществ. Неорганические вещества используются для синтеза органических молекул. При недостатке минеральных веществ важнейшие процессы жизнедеятельности клеток нарушаются.

Углеводы придают прочность клеточным оболочкам, а также служат запасающими веществами. Белки входят в состав разнообразных клеточных структур, регулируют процессы жизнедеятельности и тоже могут запасаться в клетках. Жиры откладываются в клетках. При расщеплении жиров освобождается необходимая живым организмам энергия.

Нуклеиновые кислоты играют ведающую роль в сохранении наследственной информации.

Клетка – это миниатюрная природная лаборатория, в которой синтезируются и претерпевают изменения различные химические соединения. Сходство химического состава клеток разных организмов доказывает единство живой природы.

  • Разбор типового тренировочного задания:
  • Тип задания: Сортировка элементов по категориям
  • Текст вопроса: Расставьте названия веществ в таблицу:
Органические вещества Неорганические вещества
  1. Варианты ответов:
  2. Белки
  3. Вода
  4. Углеводы
  5. Жиры
  6. Кислород
  7. Правильный вариант ответа:
Органические вещества Неорганические вещества
  • белки
  • углеводы
  • жиры
водакислород
  1. Разбор типового контрольного задания
  2. Тип задания: Выделение цветом
  3. Текст вопроса: Выделите цветом вещества, входящие в состав живых организмов:
  4. Варианты ответов:
  1. Вода
  2. Пластик
  3. Белки
  4. Жиры
  5. Нефть
  6. Углеводы
  7. ДНК и РНК
  • Правильный вариант ответа:
  • 1) Вода
  • 3) Белки
  • 4) Жиры
  • 6) Углеводы
  • 7) ДНК и РНК
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]