Химический состав клетки

Химический состав клетки Химический состав клетки

Средняя оценка: 4.5

Всего получено оценок: 3197.

Обновлено 3 Октября, 2020

Средняя оценка: 4.5

Всего получено оценок: 3197.

Обновлено 3 Октября, 2020

Все организмы на нашей планете состоят из клеток, которые схожи между собой химическим составом. В данной статье мы кратко расскажем о химическом составе клетки, роль различных веществ в жизнедеятельности всего организма, узнаем, какая наука изучает данный вопрос.

Наука, которая изучает строение живой клетки, называется цитологией. Химический состав клеток и превращения веществ в организме рассматривает наука биохимия.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

К макроэлементам относятся водород, углерод, кислород и азот. На их долю приходится почти 98% массы всех составных элементов. Эти макроэлементы называются органогенными, так как они образуют молекулы органических веществ (белков, нуклеиновых кислот, жиров, углеводов). К макроэлементам также относятся калий, натрий, кальция, магний, железо, хлор, сера, фосфор.

Микроэлементы имеются в количестве от стотысячных до тысячных долей процента. Например, хром, медь, цинк и другие. И совсем малое содержание в клетке ультрамикроэлементов – миллионные доли процента.

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Химический состав клеткиРис. 1 Содержание химических элементов в клетке

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому и живая, и неживая природа состоит из одних и тех же элементов. Этим доказывается их общность и взаимосвязь.

Несмотря на количественное содержание, входящие в состав живого элементы играют важную роль. Поддержание постоянного химического состава в организме является важным условием жизни. Ведь у каждого из химических элементов есть своё значение.

Макроэлементы углерод, водород, кислород и азот являются основой биополимеров, а именно белков и нуклеиновых кислот, первые три из них входят в состав углеводов и липидов. В состав органических веществ входят также фосфор и сера.

Многие элементы входят в состав жизненно важных веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет кислотность среды. Чаще всего она слабощелочная. Ионы натрия и калия участвуют в проведение нервных импульсов.

Гемоглобин содержит железо, хлорофилл – магний, твердость костям и зубам придают нерастворимые соли кальция.

Химический состав клеткиРис. 2. Состав клетки

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные – растворяются в воде;
  • Гидрофобные – не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме, является участником различных реакция (например, фотосинтеза), участвует в регуляции температурного режима.

Химический состав клеткиРис. 3. Вещества клетки.

Чтобы наглядно понять, какую роль играют химические элементы, входящие в состав клетки, мы внесли их в следующую таблицу:

Элементы % Значение
Кислород, углерод, водород, азот. До 98 Содержатся в органических веществах и воде.
Кальций 2 – 3 Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.
Фосфор 1 Содержится в нуклеиновых кислотах, ферментах, клеточных мембранах в составе фосфолипидов, костной ткани и зубной эмали в соединении с кальцием.
Сера 0,2 – 0,3 Является основой белков, ферментов и витаминов.
Калий 0,2 – 0,3 Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.
Хлор 0,2 Один из компонентов желудочного сока, провокатор ферментов.
Йод 0,1 Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.
Натрий 0,1 Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.
Магний 0,07 Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.
Железо 0,01 Составная часть гемоглобина, хрусталика, роговицы, участвует в синтезе хлорофилла, транспорте кислорода по организму.
Медь < 0,01 Составная часть процессов кровообразования, фотосинтеза, ускоряет внутриклеточные процессы окисления.
Марганец < 0,01 Активизирует фотосинтез, участвует в кровообразовании, обеспечивает высокую урожайность.
Фтор < 0,01 Составная часть зубной эмали.
Бор < 0,01 Регулирует рост растений.

Каждая клетка живой природы имеет схожий набор химических элементов. Все химические элементы, входящие в состав живого, присутствуют в неживой природе. Это указывает на общность происхождения и взаимосвязь. В зависимости от содержания в организме выделяют макроэлементы, микроэлементы и ультрамикроэлементы, у каждого из которых есть своя роль.

Чтобы попасть сюда – пройдите тест.

Средняя оценка: 4.5

Всего получено оценок: 3197.

А какая ваша оценка?

Гость завершил

Тест «Обломов»с результатом 14/19

Гость завершил

Тест на тему “Липиды”с результатом 6/10

Гость завершил

Тест «Гроза»с результатом 11/19

Гость завершил

Тест «Отцы и дети»с результатом 10/15

Гость завершил

Тест на тему “Ямб и хорей”с результатом 4/5

Гость завершил

Тест «Обломов»с результатом 18/19

Гость завершил

Тест НЕ с прилагательнымис результатом 4/7

Гость завершил

Тест на тему “Эссе”с результатом 4/5

Гость завершил

Тест «Дубровский»с результатом 9/16

Не подошло? Напиши в х, чего не хватает!

2.3 Химический состав клетки. Макро- и микроэлементы

Видеоурок 1: Химический состав клетки. Макро и микроэлементы. Роль химических веществ

Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

Химический состав клеткиОбнаружено, что в клетках живых организмов постоянно содержатся в виде нерастворимых соединений и ионов около 80 химических элементов. Все они подразделяются на 2 большие группы по своей концентрации:

  • макроэлементы, содержание которых не ниже 0,01%;
  • микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Макроэлементы:

  • Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.
  • Азот, кислород, водород, углерод. Это основные компоненты клетки.
  • Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.
  • Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.
  • Магний – компонент хлорофилла. Участвует в синтезе белков.
  • Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

  • Цинк – компонент инсулина;
  • Медь – участвует в фотосинтезе и дыхании;
  • Кобальт – компонент витамина В12;
  • Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;
  • Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

  • Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.
  • В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.
  • Неорганические вещества клетки
  • Вода. От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:
  • терморегуляции;
  • капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

  • переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;
  • формировании нервных импульсов, имеющих электрохимическую природу;
  • сокращении мышц;
  • свертывании крови;
  • входят в состав белков;
  • фосфат-ион – компонент нуклеиновых кислот и АТФ;
  • карбонат-ион – поддерживает Ph в цитоплазме.
Читайте также:  Одомашнивание птиц. птицеводство - биология

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры. 

Основные классы, имеющиеся в живых организмах:

Углеводы. В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

  • Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.
  • Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.
  • Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.
  • Сахароза (дисахарид) – источник энергии, образуется в растениях.
  • Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.

Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям).

Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м.

Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон.

Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липиднуюструктуру. Жиры входят в основу структуры мембран.

Белки или протеины являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи.

Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи.

В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

  • первичная структура – аминокислотная цепочка;
  • вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;
  • третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;
  • четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Химический состав клетки

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры. 

Белки выполняют в клетке множество функций:

  • ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);
  • транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;
  • защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.
  • структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;
  • регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;
  • энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано  в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы –нуклеотиды, имеющие принципиально общую структуру из:

  • фосфат-группы;
  • дезоксирибозы;
  • азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

  • вместо тиминового нуклеотида – урациловый;
  • рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

  • 3 остатка фосфорной кислоты;
  • аденин;
  • рибозу.

В результате каскадных химических процессов дыхания синтезируется в митохондриях. Основная функция – энергетическая, одна химическая связь в ней содержит почти столько же энергии, сколько получается при окислении 1 г жира.

Предыдущий урок Следующий урок

Химический состав клетки: микро- и макроэлементы

Химический состав клетки: микро- и макроэлементы добавить в закладки

Клетки всех живых организмов имеют сходный химический состав, включающий в себя органические и неорганические вещества. Каждое из таких соединений выполняет в структуре живого определенную функцию, которая связана с их строением.

Химический состав клетки

Химический состав клетки

Большая часть химических элементов, находящихся в Периодической системе Менделеева Д.И., обнаружена внутри живых клеток. Там они находятся не в хаотичном расположении, а образуют органические и неорганические соединения. Хотя соединений неорганического типа внутри «живого» больше, роль органических веществ гораздо значимее!

Областью биологии, занимающейся изучением химического состава клеток, является биохимия. На долю органических веществ выпала функция определения уникальности живого организма на планете.

Макро- и микроэлементы

  • Все содержащиеся внутри живых клеток элементы объединяют в две большие группы: микроэлементы и макроэлементы.
  • О микроэлементах
  • Внутри живых клеток содержится минимальная часть микроэлементов (0,01%), но без этого количества живые организмы не могут полноценно существовать. В категорию микроэлементов относят:
  • фтор (формирует зубную эмаль);
  • йод (синтезирует гормон щитовидной железы);
  • кобальт (составная часть витамина В12);
  • медь (участвует в дыхании);
  • цинк (входит в состав инсулина);
  • магний (входит в состав молекулы хлорофилла у растений);
  • кремний (образование коллагеновых волокон);
  • литий (регулирует процессы размножения).

Условия окружающей среды определяют концентрацию химических элементов внутри живого организма. К примеру, повышенное содержание меди имеется внутри моллюсков, а железа – в позвоночных организмах.

Читайте также:  Тканевой уровень. Ткани многоклеточного организма

Про макроэлементы

Внутри живого организма содержание макроэлементов составляет около 99%. Наиболее важная роль из них отводится:

  • азоту;
  • углероду;
  • водороду;
  • кислороду.

Это органогенные элементы, так как они образуют главные органические соединения. Остальные (сера, фосфор и прочие) отвечают за происходящие в живом организме процессы.

При избытке либо дефиците в организме микро- и макроэлементов развиваются различные заболевания. Поэтому, периодически следует восполнять концентрацию данных элементов в живом организме, увеличивая или уменьшая  их количество в пище.

Неорганические вещества клетки

В категорию неорганических соединений относят минеральные соли и воду.

  1. Минеральные соли.
    • Данные вещества представлены в организмах в нерастворенных либо растворенных формах. Их основной функцией служит поддержание буферных свойств цитоплазмы (постоянство слабощелочной реакции внутри цитоплазмы). Также они ответственны за формирование зубов и костей, участвуют в процессах кроветворения. У растений минеральные соли ответственны за интенсивность процесса фотосинтеза и рост.
  2. Молекулы воды.
    • Благодаря наличию в ее структуре прочных ковалентных связей, вода обладает ярко выраженными свойствами «растворителя». 

Органические вещества клетки

К органическим соединениям, находящимся внутри живого относят:

  1. Белки. Данные органические полимеры состоят из аминокислот, образуя в организме первичную, вторичную, третичную и четвертичную структуры строения. Основными их функциями являются: строительная (входят в состав клеточных мембран), защитная (иммунобелки)  и транспортная (перенос кислорода гемоглобином).
  2. Жиры. Это липидоподобные соединения, обладающие яркими гидрофобными свойствами. При расщеплении 1 г. жира высвобождается значительное количество энергии(38,9 кДж), идущей на поддержание температуры тела и выполнение движений.
  3. Углеводы. Данные соединения состоят из углерода, кислорода и водорода. Различают следующие группы углеводов: моносахариды (глюкоза, фруктоза, рибоза), дисахариды (сахароза, мальтоза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). При их расщеплении выделяется много энергии, необходимой для протекания процессов жизнедеятельности. Также, они способны накапливаться  как запасные питательные вещества в виде крахмала и гликогена. 
  4. Нуклеиновые кислоты. Представлены молекулами рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. РНК ответственна за синтез белковых молекул и транспортировку аминокислот. ДНК отвечает за хранение наследственных признаков с их последующей передачей.
  5. Аденозинтрифосфорная кислота. Состоит из: трех остатков фосфорной кислоты, аденина (азотистое основание) и рибозы (пятиосновного сахара). Молекулы аденозинтрифосфорной кислоты АТФ отвечают за идущий в митохондриях синтез энергии и ее хранение.

Взаимосвязь строения и функций неорганических и органических веществ

Выполняемые неорганическими и органическими веществами функции тесно связаны с их строением. Так, покрывающая клетку мембрана (оболочка) содержит в своем составе углеводы, белки и липиды. Находящиеся на поверхности клеточной оболочки белки-рецепторы воспринимают сигналы из окружающего пространства, выполняя тем самым рецепторную функцию.

Содержание липидов (жиров) внутри мембран определяет проницаемость оболочки для одних соединений и непроницаемость для других. Углеводы ответственны за синтез молекул АТФ, запасающих энергию. Аналогично связано строение других компонентов клетки с их составом.

Роль химических веществ в клетке и организме человека

Внутри живых организмов каждое химическое вещество играет определенную роль, благодаря чему весь организм способен полноценно жить. Так, присутствие в клетке магния способствует выработке некоторых ферментов и формированию хлорофилла у растений. Кальций формирует прочность зубов и костей человека, а также активирует работу волокон мышц. 

Без серы в организме не смогут образовываться белки, а без ионов натрия и калия в клетку не смогут поступать некоторые соединения.

Функции химических элементов в клетке

Элемент Функция
O, H Входят в состав воды;

  • среда для протекания биохимических реакций;
  • донор электронов при фотосинтезе;
  • обуславливает рН среды;
  • транспорт веществ;
  • универсальный растворитель;
  • теплопроводность, теплоемкость.
C, O, H, N входят в состав белков, жиров, липидов, нуклеиновых кислот, полисахаридов.
K, Na, Cl проводят нервные импульсы.
Ca компонент костей, зубов необходим для мышечного сокращения, компонент свертывания крови, посредник в механизме действия гормонов.
Mg структурный компонент хлорофилла, поддерживает работу рсом и митохондрий
Fe структурный компонент гемоглобина, миоглобина.
S в составе серосодержащих аминокислот, белков.
P в составе нуклеиновых кислот, костной ткани.
B необходим некоторым растениям.
Mn, Zn, Cu активаторы ферментов, влияют на процессы тканевого дыхания.
Co входит в состав витамина В12.
F состав эмали зубов.
I состав тироксина.

Смотри также:

Химический состав клетки. Жизнедеятельность клеток – Сайт по биологии

  • К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера|сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

    Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.

    Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды|воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды|воды.

    Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды|воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.

    Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты|кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.

    Сера|Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

    Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты|кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).

    Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

    Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли|соли кальция участвуют в формировании костей|костей и зубов позвоночных и минеральных скелетов беспозвоночных.

    Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции (в том числе в работе почек у человека) и создании буферной системы крови.

    Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.

    • Хлор — поддерживает электронейтральность клетки.
    • Микроэлементы
    • К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела|тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен|селён, фтор (зубная эмаль), медь, хром, цинк
    • Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина
    • Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.
    • Селен|Селён — участвует в регуляторных процессах организма.
    • Ультрамикроэлементы

    Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды|воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен|селён, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов ещё мало|мало понятны.

  • Биология ЕГЭ. Химический состав клетки. Вся теория + конспект

    Приветствую, и снова новый день и снова подготовка к ЕГЭ. Давайте немного отойдем от биологии и затронем другую науку – химию (хрен редьки не слаще, ага), но сегодня нам важно разобраться из чего же состоят все живые объекты (организмы, клетки, органоиды клеток и т.д.).

    Читайте также:  Гибридологический метод изучения наследственности. первый закон менделя - биология

    3д модель из атомов (с)

    Помните, когда я рассказывал про свойства живых организмов, я упоминал, что все они состоят из молекул определённых химических веществ (воды, жиров, белков, углеводов и т.д.

    ) – это ещё называлось умным определением “единство химического состава живого“.

    Вспомнили? Отлично, тогда сегодня просто пробежимся по особенностям и функциям этих веществ в живых организмах и клетках. Поехали.

    Химический состав живых организмов (с) картинка из интернета Химический состав живых организмов (с) картинка из интернета

    Неорганические вещества (Вода и Соли)

    Вода играет огромную роль в жизнедеятельности живых существ. Она транспортирует вещества и растворяет их (кроме жиров), делая их доступными для клеток. Участвует во множестве химических реакций, обеспечивает упругость клеток (до 90% цитоплазмы приходится на воду) и выполняет очень много метаболических функций (теплорегуляция, фотосинтез, выведение и т.д.)

    Соль также очень важна для жизнедеятельности клеток и организма. Соль нужна клеткам для проведения электрических импульсов (нервные клетки), для сокращения тканей (сердечная и мышечная ткань). Также соединения солей входят в состав различных структур (костей, зубов, волос и т.д.)

    Соль и вода наши лучшие друзья (с) картинка из интернета Соль и вода наши лучшие друзья (с) картинка из интернета

    Органические вещества (Белки / Жиры / Углеводы / Нуклеиновые кислоты)

    Возьмите с полки в магазине любой продукт и переверните упаковку, на обратной стороне вы обязательно найдете информацию о составе и содержании БЖУ (белков, жиров, углеводов) в продукте.

    Производитель обязан их указывать, для того, чтобы вы покупая тот или иной продукт могли оценить, что у него внутри и какую питательную и пищевую ценность для организма он представляет (правда этим обычно никто не пользуется, но это уже другая история).

    БЖУ пельменей (с) картинка из интернета БЖУ пельменей (с) картинка из интернета

    Давайте пробежимся по каждому пищевому нутриенту (да, таким умным словом называют составные части продукта).

    Белки – соединение состоящее из аминокислот (проще не стало, знаю). Белки это такая штука из которой состоит большая часть нашего тела. Все мышцы – это белок, кожа и волосы – белок, внутренние органы – тоже состоят из белковых структур. Поэтому потребления белка важно для существования организма, иначе он не сможет создать все эти структуры.

    Жизнь – это способ существования белковых тел (с) Ф. Энгельс Жизнь – это способ существования белковых тел (с) Ф. Энгельс

    Жиры (липиды) – к ним относятся различные жиры, масла (подсолнечное и оливковое масло это чистый жир, если вы не знали, и некоторые другие соединения вроде воска). Жиры важны для организмов не меньше, чем белки. Из жиров состоят многие гормоны (например тестостерон), они входят в состав органов и тканей (мозга, печени).

    Углеводы (моно/полисахариды) – чаще всего выполняют энергетическую функцию. Глюкоза и сахараза используются нашими организмами для питания и получения АТФ. Однако одним питанием их функции не ограничиваются. У растений и грибов клеточная стенка состоит из углеводов (целлюлозы и хитина), поэтому они могут выполнять структурную и защитную функцию.

    Также углеводы могут использоваться для запасания питательных веществ (вместо жиров). Например картофельный крахмал – это чистый углевод и растениям он нужен для того, чтобы они могли пережить холодную зиму.

    Основные типы углеводов (с) картинка из интернета Основные типы углеводов (с) картинка из интернета

    Конечно тема химического состава намного глубже, ведь в состав живых организмов входят тысячи химических соединений, однако для первого раза достаточно. В следующих статьях мы ещё будем возвращаться и косвенно касаться этой темы, поэтому, чтобы вам было удобнее я сделал конспект, можешь скачать его по ссылке с Яндекс Диска.

    Конспект биология ЕГЭ. Химический состав клетки. Белки. Жиры. Углеводы. Конспект биология ЕГЭ. Химический состав клетки. Белки. Жиры. Углеводы. Не забудь поставить лайк и подписаться, это поддерживает мою веру в то, что я не просто так это всё делаю. Удачи и успехов.

    Химический состав клетки – кратко о свойствах, особенностях и функциях веществ

    Принципы классификации

    Изучив живую природу, ученые пришли к выводу, что организмы состоят из тех же атомов, что и тела неживой материи. Соотношение различных веществ в живых телах и земле существенно отличается.

    В состав клетки входят химические элементы, которые образуют органические и неорганические компоненты. Уникальность химического состава связана с незначительным количеством первых. Их синтез происходит в процессе жизнедеятельности, что обеспечивает нормальное развитие организма.

    Элементы, входящие в химический состав, классифицируются на 3 группы:

    • ультрамикроэлементы;
    • микроэлементы;
    • макроэлементы.

    К ультрамикроэлементам относятся золото, серебро, ртуть. Два первых компонента оказывают на организм бактерицидное воздействие. Ртуть необходима для подавления обратного всасывания воды в канальцах почек. Она воздействует на ферменты. Другие вещества, которые относятся к ультрагруппе:

    На долю микроэлементов приходится от 0,001% массы тела человека. Группа состоит из кобальта, никеля, селена, меди, цинка, хрома. Особенность цинка заключается в наличии в его составе ферментов, которые способствуют спиртовому брожению. К окислительным ферментам относится медь. Она участвует в синтезе цитохромов. За регуляцию процессов, протекающих в организме, отвечает селен.

    Описание макропоказателей

    Макроэлементы представлены в виде кислорода, водорода, калия, азота, серы, натрия, железа и других веществ. Некоторые компоненты являются минералами, органическими соединениями. К примеру, углерод состоит из атомов и выделяется при дыхании в виде CO2. В минералах он присутствует в незначительном количестве.

    К органическим компонентам относится кислород. Он образуется при фотосинтезе. Аэробными организмами он используется в качестве окислителя при дыхании, обеспечивая их энергией. Особенности строения других макроэлементов:

    1. Водород. Находится в органических органоидах. В максимальной концентрации присутствует в воде. Некоторые бактерии способствуют проведению окислительной реакции.
    2. Азот. Присутствует в белках, мономерах и нуклеиновых кислотах. У животных он выводится с мочевиной, гуанином, аммиаком. В комплексе с оксидом азота вещество регулирует кровяное давление.
    3. Сера. Содержится в аминокислотах и белках. В незначительном количестве присутствует в цитоплазме и межклеточной жидкости.

    В АТФ находится фосфор, который способствует укреплению эмали и костей. Его содержание наблюдается в цитоплазме и межклеточной жидкости.

    Дополнительные компоненты

    За синтез ДНК и энергетический обмен отвечает магний. Он поддерживает целостность внутриклеточных структур, включая митохондрии. У животных магний отвечает за функционирование мышечных масс. С помощью кальция обеспечивается свертываемость крови. Он считается вторичным посредником в регулировке внутриклеточных процессов, обеспечивая:

    • поддержку состава мембран;
    • образование минеральных скелетов.

    За мембранный потенциал отвечает натрий. Одновременно он способствует генерации нервного импульса и осморегуляции почек. К сокращению миокарда приводит калий. Он содержится и в межклеточном пространстве. Хлор поддерживает электронейтральность элементарных тел. В молекулярный состав клеток входят следующие компоненты:

    • вода;
    • белки;
    • углеводы;
    • минеральные соли;
    • АТФ.

    Основная составляющая биополимеров — макроэлементы. Микрокомпоненты принимают активное участие в обменных процессах. Они считаются составными веществами минералов, которые присутствуют в клетках в виде анионов и катионов. За счет их соотношения определяется щелочная среда. Чаще она носит слабый характер, так как концентрация минеральных солей не изменяется.

    При нарушении баланса между компонентами клетки развиваются патологические состояния. Для нормализации работы всего организма рекомендуется пройти комплексное обследование. На основе полученных результатов врач ставит диагноз и назначает адекватное лечение.

    Ссылка на основную публикацию