Растительная клетка – биология

Cтроение растительной клетки — рисунок с подписями

Растительная клетка - биология

Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.

Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.

Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:

  • все живое на земле состоит из структурных единиц — клеток;
  • по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки;
  • в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.

Клетка растения

Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:

  • наличие клеточной стенки (оболочки);
  • наличие пластид;
  • наличие вакуоли.

Строение растительной клетки

На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.

Ниже будет подробно рассказано о каждой из них.

Органоиды клетки и их функции — описательная таблица

В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.

Органоид Описание Функция Особенности
Клеточная стенка Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. Характерна для растительных клеток (отсутствует в животной клетке).
Цитоплазма Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. Объединение и взаимодействие всех структур (органоидов). Возможно изменение агрегатного состояния.
Ядро Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. Хранение и передача наследственной информации. Двумембранный органоид.
Ядрышко Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. В них синтезируются рРНК и субъединицы рибосом. Ядро содержит 1-2 ядрышка.
Вакуоль Резервуар с аминокислотами и минеральными солями. Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). Чем старше клетка, тем большее пространство в клетке занимает вакуоль.
Пластиды 3 вида: хлоропласты, хромопласты и лейкопласты. Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. Иногда могут переходить из одного вида пластид в другой.
Ядерная оболочка Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). Разделяет цитоплазму от внутреннего содержимого ядра. Двумембранный органоид.

Цитоплазматические образования — органеллы клетки

Поговорим подробнее о составляющих растительной клетки.

Ядро

Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.

Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.

Эндоплазматическая сеть (ЭПС)

Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны. Второй тип способен осуществлять детоксикацию вредных продуктов обмена.

Аппарат Гольджи

Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.

Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.

Лизосомы

Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение — участвовать в процессах расщепления внутри клетки.

В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.

Митохондрии

Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.

Внутренняя мембрана способна образовывать складки — кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.

Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.

Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.

Пластиды

По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:

  • отвечающие за зелёную окраску растений — хлоропласты;
  • ответственные за осенние цвета — оранжевый, красный, жёлтый, охра — хромопласты;
  • не влияющие на окрашивание, бесцветные лейкопласты.

Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.

В них осуществляются процессы фотосинтеза. Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.

Это важно: основной функцией хлоропластов является фотосинтез – синтез органических веществ из неорганических при участии световой.

За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).

Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).

Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.

Лейкопласты

Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.

Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.

Рибосомы

Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).

Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.

Микротрубочки

Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.

Вакуоль — строение и функции

На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).

Занимает большую часть клетки, центральную её часть.

Запасает воду и питательные вещества, а также продукты распада.

Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.

Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.

Источник: https://1001student.ru/biologiya/kletka-rasteniya.html

Изучаем биологию – Растительная клетка

Особенности строения и выполняемые функции

 Хлоропласты

Органелла, в которой происходит фотосинтез. Имеет двойную мембрану и сложную внутреннюю мембранную структуру (тилакоиды). Является разновидностью пластид. Все пластиды развиваются из пропластид – относительно мелких бесцветных или бледно-зеленых органелл.

 Хромопласты

Хромопласты развиваются из хлоропластов и лейкопластов в результате внутренней перестройки. Имеют двойную мембрану, но в отличие от лейкопластов и хлоропластов не имеют внутренней мембранной структуры. Желтая, оранжевая или красная окраска хромопластов обусловлена наличием каротиноидных пигментов. Больше всего их содержится в клетках цветочных лепестков и кожуры фруктов.

 Пластиды

Третий вид пластид. Имеет двойную мембрану и внутреннюю мембранную структуру (немногочисленные тилакоиды). Среди лейкопластов выделяют амилопласты, которые синтезируют и накапливают крахмал, и элайопласты (липидопласты), которые синтезируют жиры.

  Вакуоль

Занимает до 90% объема зрелой клетки растений. Заполнена клеточным соком, в котором растворены соли, сахара и органические кислоты. Вакуоль помогает регулировать тургор клетки.

Содержит антоцианин – пигмент, окрашивающий лепестки цветков в красный, синий и пурпурный цвета, а также ферменты, участвующие в повторном использовании компонентов клетки, например хлоропластов.

Мембрана вакуоли называется тонопластом.

 Микротрубочки

Трубочки около 25 нм в диаметре, состоящие из белка тубулина. Расположены около плазматической мембраны и участвуют в отложении целлюлозы на клеточные стенки. Участвуют в перемещении в цитоплазме различных органелл, например пузырьков Гольджи и хлоропластов. При делении клетки микротрубочки составляют основу структуры веретена деления.

 Плазматическая мембрана (плазмалемма, наружная мембрана клетки ЦПМ)

 Мембрана (от лат. membrana – кожица, оболочка, перепонка) – тонкая оболочка, отделяющая клетку от внеклеточной среды или от клеточной стенки. Состоит из липидной пленки со встроенными в нее белками, которые могут располагаться на поверхности мембраны или пронизывать ее насквозь. Мембрана обеспечивает избирательное проникновение в клетку и выход из клетки различных веществ.

 Гладкий эндоплазматический ретикулум (гладкий ЭПР)

 Осуществляет синтез и выделение липидов.

 Ядро

Окружено ядерной оболочкой и содержит генетический материал – ДНК со связанными с ней белками гистонами (хроматин). Ядро, регулируя синтез белков, контролирует жизнедеятельность клетки. Ядрышко – место синтеза молекул транспортной РНК, рибосомальной РНК и рибосомных субъединиц.

Аппарат Гольджи

 Некоторые белки сразу после синтеза поступают в аппарат Гольджи, где обрабатываются ферментами. В нем синтезируются полисахариды, которые в виде пузырьков и перемещаются к плазматической мембране для последующего включения в состав клеточной стенки.

  Митохондрия

Содержит ферменты для синтеза АТФ в ходе окислительного фосфорилирования. Этих органелл очень много в клетках-спутниках ситовидных трубок, в эпидермальных клетках корня и в клетках меристем, осуществляющих рост растения.

 Шероховатый эндоплазматический ретикулум (шероховатый ЭПР)

Служит для синтеза белков (в рибосомах, прикрепленных к его мембране), их накопления и преобразования для выделения из клетки наружу (секреции). Осуществляет компартментацию клетки.

Плазмодесмы

 Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки и объединяют протопласты соседних клеток. Симпласт состоит из объединенного множества протопластов. По нему перемещаются вода и растворы в теле растения. Эта система межклеточной цитоплазматической связи позволяет растению выжить в засушливый период. Посредством плазмодесм соединяются полости ЭПР смежных клеток.

Клеточная стенка

Состоит из длинных молекул целлюлозы. 

 Механическая прочность клеточной стенки позволяет клеткам поддерживать избыточное внутреннее давление – тургор. Система связанных друг с другом клеточных стенок, по которой в растении транспортируется большая часть воды в виде растворов, называется апопластом. Он пронизывает все тело растения.

Читайте также:  Железы внутренней секреции и их функции - биология

Виртуальная лабораторная работа

Нет дополнительных материалов для этого занятия.

Источник: https://www.kursoteka.ru/course/879/lesson/3367

Клетка растений

Есть несколько причин, почему растения выделяют в отдельное царство.

  • Во-первых, запасное питательное вещество растительной клетки — углевод крахмал;
  • во-вторых, это неподвижный образ жизни и неограниченный рост;
  • и в -третьих, особенности клеточного строения растений — определенные органеллы клетки, которые присущи именно этому царству живых организмов.

Основные (общие для всех клеток) органеллы :

  1. Ядро и ядрышко — хранение и передача наследственной информации.
  2. Мембрана клетки — защита, поддержание формы, активный и пассивный транспорт веществ. У растений мембрана клетки утолщена запасным питательным веществом — крахмалом — и это уже целая  клеточная стенка.
  3. Цитоплазма  — внутренняя жидкая среда любой клетки, содержит все органойды, органические и неорганические вещества, поддерживает тургор (внутреннее давление) клетки.
  4. Эндоплазматическая сеть (эндоплазматический ретикулум) — это и внутренний «скелет» клетки, и обеспечение транспорта питательных веществ, в случае шероховатой ЭПС — это синтез белка,.
  5. Аппарат Гольджи — «сортирует»  белки, выводит вещества, произведенные ЭПС, образует лизосомы.
  6. Лизосомы — пищеварительные органеллы клетки.
  7. Митохондрия — «энергетическая станция» клетки.
  8. Рибосомы — производство белка. Рибосом в растительной клетке мало, гораздо меньше, чем в животной. Это связано с тем, что функция обмена веществ ложится, главным образом, на хлоропласты.
  9. Вакуоль — органелла, присущая растительной (и грибной) клетке.

Строение вакуоли

В растительной клетке (и клетках грибов) она крупная — по размеру может быть даже больше ядра.
Органойд окружен мембраной, внутри содержится вода с растворенными в ней веществами.

Функции вакуоли:

  • Хранение запасных веществ
  • Выведение из организма продуктов распада
  • Если вакуоль содержит ферменты, то это пищеварительная вакуоль
  • Пульсирующая или сократительная вакуоль — поддерживает форму клетки, регулирует осмотическое давление=поддерживает ТУРГОР клетки.Из чего образуются вакуоли? Они образуются из Эндоплазматической сети (ЭПС).

10.  Органелла растительной клетки — хлоропласт.
Основной признак, по которому живой организм относят к царству Растений, это способность к фотосинтезу — автотрофному питанию.

Органелла, которая отвечает за этот процесс — синтеза органических веществ (глюкозы) из неорганических (CO2, H2O и солнечного света) — хлоропласт.

Хлоропласты — это вид пластид. В растениях пластиды бывают трех видов:

  • собственно хлоропласты — содержат хлорофилл — зеленые пластиды;
  • лейкопласты — содержат крахмал — запасное питательное вещество, эти органеллы бесцветные;
  • хромопласты — оранжевые, они содержат каротинойды.

Строение хлоропластов

Сразу оговоримся — строение этих органелл оказалось возможным изучить только с помощью электронного микроскопа.

  1. Это двумембранная органелла — есть внешняя мембрана и внутренняя.
  2. Внутри весь объем заполнен жидкостью и мембранами. Мембраны образуют пузырьки, «мешочки» — тилакойды.
  3. Тилакойды, собранные в пачки, называются гранами.

Именно в этой системе происходит фотосинтез. Давайте разберем подробнее сам процесс.

Процесс фотосинтеза

Хлорофилл улавливает энергию света, преобразует ее в АТФ (синоним энергии в биологии), и синтезирует глюкозу — органическое вещество.

Ферменты — биокатализаторы всех природных процессов, расположены так же в хлоропластах.

Уравнение фотосинтеза выглядит следующим образом:

6СO2 + 6H2O = C6H12O6 (глюкоза) + 6O2

Это суммарное уравнение процесса, который, на самом деле, состоит из двух фаз: темновой и световой.

Световая фаза фотосинтеза:

(происходит на мембранах тилакойдов)

  • Энергия света используется для синтеза и запасания АТФ (энергии) и образования других молекул — носителей энергии;
  • Идет процесс — фотолиз воды: 2H2O = O2 + 4H(+)  + 4e- (выделяется кислород)

Темновая фаза:
(происходит в стромах хлоропласта)

  •  вот именно в эту фазу идет синтез глюкозы, для которой используется энергия, накопленная в световой фазе;
  • образуется глюкоза — основной органический продукт фотосинтеза

Фотосинтез обеспечивает 2 абсолютно важные для жизни на Земле вещи:

  1. Растения — автотрофы и продуценты — т.е. они первые образуют органические вещества, которые поглощают все остальные организмы.
  2. Именно растения поставляют кислород, необходимый для дыхания других живых организмов.

Рост клетки

Растительные клетки растут за счет увеличения объема цитоплазмы и за счет увеличения размера вакуолей. Клеточная оболочка при этом растягивается.

 

 

  • в ЕГЭ это вопрос A2 — Клеточная теория. Многообразие клеток
  • A3 — Клетка: химический состав, строение, функции органоидов
  • А27 — Клеточный ровень организации
  • B2

Тест “Органойды клетки”

 

Обсуждение: “Клетка растений”

(Правила комментирования)

Источник: https://distant-lessons.ru/kletka-rastenij.html

Чем растительная клетка отличается от животной

Основные составляющие растительной клетки – это оболочка клетки и её содержимое, которое называется протопластом. Оболочка отвечает за форму клетки, а также обеспечивает надёжную защиту от влияния внешних факторов.

Взрослая клетка растения отличается наличием полости с клеточным соком, которая имеет название вакуоль. Протопласт клетки содержит ядро, цитоплазму, а также органеллы: пластиды, митохондрии.

Ядро клетки растения покрыто двумембранной оболочкой, которая содержит поры. Через эти поры поступают к ядру вещества.

Следует сказать, что цитоплазма растительной клетки имеет достаточно сложное строение мембран. Сюда входят и лизосомы, и комплекс Гольджи, и ретикулум эндоплазмы.

Цитоплазма растительной клетки является основным компонентом, который участвует в важных процессах жизнедеятельности клетки. Существуют также и немембранные структуры в цитоплазме: рибосомы, микротрубочки и прочие.

Основная плазма, в которой располагаются все органеллы клетки, называется гиалоплазмой. Растительная клетка содержит хромосомы, которые отвечают за передачу наследственной информации.

Особые признаки растительной клетки

Можно выделить основные отличительные особенности клеток растения:

  • Оболочка клетки состоит из целлюлозной оболочки.
  • В клетках растений содержатся хлоропласты, которые отвечают за фотоавтотрофное питание за счёт наличия хлорофиллов с зелёным пигментом.
  • Клетка растения предполагает наличие трёх разновидностей пластид.
  • Растение имеет особую клетку вакуоль, причем молодые клетки имеют небольшие вакуоли, а взрослая клетка отличается наличием одной большой.
  • Растение способно откладывать углевод про запас в качестве крахмальных зёрен.

Строение животной клетки

Животная клетка в обязательном порядке содержит ядро и хромосомы, наружную мембрану, а также органоиды, расположенные в цитоплазме. Мембрана животной клетки защищает её содержимое от внешнего воздействия. В состав мембраны входят молекулы белков и липидов.

Взаимодействие ядра и органоидов клетки животного обеспечивает цитоплазма клетки.

К органоидам животной клетки относят рибосомы, которые расположены в эндоплазматической сети. Здесь происходит процесс синтеза белков, углеводов и липидов.

Рибосомы же отвечают за синтез и транспортировку белка.

Митохондрии животной клетки ограничены посредством двух мембран. Лизосомы клетки животного способствуют детальному расщеплению белков до аминокислот, липидов до уровня глицерина, а жирных кислот до моносахаридов. Также клетка содержится комплекс Гольджи, который состоит из группы определённых полостей, которые отделены мембраной.

К признакам, которыми похожи растительные и животные клетки, можно отнести следующие:

  1. Схожее строение системы структуры, т.е. наличие ядра и цитоплазмы.
  2. Обменный процесс веществ и энергии близки по принципу осуществления.
  3. И в животной, и в растительной клетке имеется мембранное строение.
  4. Химический состав клеток очень похож.
  5. В клетках растения и животного присутствует похожий процесс клеточного деления.
  6. Растительная клетка и животная имеет единый принцип передачи кода наследственности.

Существенные различия между растительной и животной клеткой

Помимо общих признаков строения и жизнедеятельности растительной и животной клетки, существуют и особые отличительные черты каждой из них. Отличия клеток заключаются в следующем:

  • Наличие пластидов. В растительных клетках различают такие виды пластидов как хлоропласты, хромопласты и лейкопласты. А в животных клетках пластиды отсутствуют.
  • Питание растительной клетки считается автотрофным, который, в свою очередь, разделяется на фототрофный и хемотрофный. А животная клетка питается гетеротрофным путём, который включает паразитический и сапротрофный виды.
  • Процесс распада аденозинтрифосфорной кислоты в растительной клетке происходит в хлоропластах и прочих клеточных элементах, где необходима затрата энергии. В животной клетке такой процесс происходит во всех частях клетки, требующих энергетической затраты.
  • Наличием клеточного центра у растений отличаются клетки низших растений. А среди животных клеток клеточный цент распространён у всех.
  • Клетка растения содержит клеточную стенку из целлюлозы, а у животной клетки таковой не имеется.
  • Второстепенные и необязательные компоненты растительной клетки состоят из запаса питательных веществ в качестве крахмальных зёрен, а также зёрен белка и капель масла. Также сюда входят вакуоли, содержащие клеточный сок и солевые кристаллы. А животная клетка содержит в качестве необязательных компонентов питательные вещества из зёрен и капель белков, жиров и углеводов. Также есть содержание солевых кристаллов, пигментов и конечных обменных продуктов.
  • Растительные вакуоли представляют собой полости с соком. А у животной клетки имеются мелкие вакуоли, разделяющиеся на сократительные, пищеварительные и выделительные.

Таким образом, можно сказать, что растительные и животные клетки похожи между собой содержанием некоторых важных элементов и некоторыми процессами жизнедеятельности, а также имеют существенные отличия в структуре и обменных процессах.

Источник: http://vchemraznica.ru/chem-rastitelnaya-kletka-otlichaetsya-ot-zhivotnoj/

Строение растительной клетки

Клетка-это элементарная живая система, тот кирпичик, из которого состоят все живые организмы, только у многоклеточных клетки различаются по строению и функциям, а у одноклеточных клетка сама-целый организм.

https://www.youtube.com/watch?v=YM4glcIfrck

Клеткам присущи все свойства живого организма — обмен веществ, а значит и  дыхание,   питание и выделение; выработка необходимой для жизни энергии , размножение с передачей наследственной информации и др.

Вся живая материя на Земле делится на два надцарства — прокариоты (доядерные) и эукариоты (ядерные). К прокариотам относятся бактерии и цианобактерии. Все остальные организмы являются эукариотами, т.е. имеют ядро.

Рассмотрим подробно строение растительной клетки.

Клетки растений, так же как и клетки животных, состоят из наружной мембраны, цитоплазмы (протоплазмы) и ядра.  Цитоплазма в свою очередь состоит из гиалоплазмы — желеобразного белкового вещества, и  различных органелл, расположенных в ней.

У растений, грибов и бактерий, в отличие от животных и простейших, снаружи от цитоплазматической мембраны имеется еще одна оболочка — так называемая клеточная стенка.

Она жесткая, прочная, и выполняет защитную, механическую и транспортную функции. У растений она состоит из целлюлозы (клетчатки) и пектинов.   (у грибов -из хитина, а у бактерий из полисахаридов).

Со временем происходит одревеснение клеточной стенки  и отмирание клетки.

У злаков и некоторых других растений в клеточной стенке откладываются минеральные вещества, благодаря чему растение становится жестче — это защита от поедания животными.

В клеточной стенке имеются отверстия, через которые соседние клетки сообщаются друг с другом с помощью выростов — плазмодесм.

Гиалоплазма представляет собой густой раствор различных неорганических и органических молекул в воде. Она движется внутри клетки, увлекая за собой органеллы. Также она может пропускать через себя одни вещества и не пропускать другие, участвуя в обмене веществ как внутри клетки, так и между клетками.

Кроме того в растительной клетке находятся полости, ограниченные мембраной, и заполненные вязким клеточным соком — вакуоли. Клеточный сок — это вода с растворенными в ней минеральными солями и органическими веществами -глюкозой, фруктозой, пектинами и др.

Читайте также:  Методы селекции растений, животных, микроорганизмов - биология

, а также продуктами обмена. Иногда клеточный сок окрашен, и придает окраску растению, Например, у краснокочанной капусты. В старых клетках вакуоль может занимать почти весь объем клетки.

Вакуоли служат хранилищем запасов воды в клетке, и придают тургор (плотность) тканям растения.

Цитоскелет. Цитоплазма клеток эукариотов пронизана трехмерной сетью белковых нитей, образующих так называемый цитоскелет. Цитоскелет выполняет три основные функции:

  • Служит механическим каркасом, придающим клетке форму, а также связывает мембрану с органеллами
  • Работает как мотор при движении или работе клетки (у животных — работа мышц, у растений — движение листьев, раскрывание лепестков и т.д)
  • Служит «рельсами» для передвижения органелл, например, митохондрий или пластидов, внутри клетки

Митохондрии

Митохондрии — энергетические станции клетки. В них происходит образование энергии, необходимой для всех жизненных процессов в клетке.

 Поглощая из цитоплазмы органические вещества, митохондрии расщепляют их при участии кислорода (иначе говоря, «сжигают» ), и синтезируют из них молекулы АТФ — основной источник энергии в клетке. При этом также образуется вода и углекислый газ.

Таким образом митохондрии-основные потребители кислорода в клетке, и первыми страдают при его недостатке. Митохондрии состоят из двух мембран, гладкой наружной и складчатой внутренней. Складки внутренней мембраны образуют перегородки — кристы.

Пластиды

Пластиды  — органеллы, состоящие из мембран, и содержащие особые пигменты. Пластиды имеются только у растений.

Выделяют три вида пластид : хлоропласты, хромопласты и лейкопласты.

Хлоропласты — содержат зеленый пигмент хлорофилл, они присутствуют в листьях и других зеленых частях растения. Хлоропласты участвуют в фотосинтезе — образовании органических веществ из воды и углекислого газа , используя энергию солнечного света.

Хромопласты — пластиды, содержащие другой пигмент — красного или желтого цвета. Хромопласты придают окраску цветам, осенним листьям. Они создают все разнообразие и красоту растительного мира.

И, наконец, лейкопласты — бесцветные пластиды, они содержатся в клетках луковиц, корней, стеблей и других неокрашенных частей растений. Зато в них накапливаются некоторые органические вещества.

При определенных условиях различные виды пластид могут превращаться друг в друга.

Ядро

Ядро — это хранилище наследственной информации — ДНК, а также главный регулятор синтеза белка. В ядре можно увидеть ядрышки, они исчезают, когда клетка начинает делиться. В ядрышках образуются рибосомы, органеллы, ответственные за синтез белка. ДНК в ядре находится в виде хромосом.

Эндоплазматическая сеть

Эндоплазматическая сеть — это система мембран и цистерн, которые сообщаются с ядром, переходя в его мембрану. Это вызвано общими функциями этих органелл — синтезом белка и других веществ.

Выделяют  гладкую и шероховатую эндоплазматическую сеть. На мембранах шероховатой эндоплазматической сети находятся рибосомы. Ее функция — синтез белка.

Гладкая эндоплазматическая сеть занимается синтезом липидов, участвует в углеводном обмене и др.

Аппарат Гольджи — Это еще одна мембранная органелла клетки. Выглядит Аппарат Гольджи как стопка цистерн, от которых отрываются пузырьки — секреторные гранулы.

 Аппарат Гольджи связан с эндоплазматической сетью, и занимается секрецией и транспортом белков, ферментов и всего того, что синтезировалось в ней.

Образующиеся пузырьки с секретом — лизосомы — могут как перемещаться по клетке, так и выводить секрет наружу, в межклеточное пространство.

Далее осталось еще два вида  немембранных органелл — рибосомы и клеточный центр.

Рибосомы — маленькие, но очень важные органеллы, отвечающие за синтез белка . Они находятся в клетке как в свободном состоянии, так и прикрепленными к мембранам шероховатой эндоплазматической сети.

Клеточный центр (или центросома) — имеется не у всех растений. Это  немембранная органелла, которая участвует в клеточном цикле — делении клетки, а также в формировании жгутиков и ресничек у некоторых растений.

Итак, мы разобрали основные органеллы растительной клетки, и теперь подведем итоги, за что же они отвечают:

Ядро Хранение и передача наследственной информации, синтез белка
Митохондрия Выработка энергии для клетки и запасание ее в виде АТФ
Пластиды Хлоропласты — Фотосинтез — образование органических веществ из углекислого газа и воды на светуХромопласты — Придают окраску, привлекательный для насекомых и животных видЛейкопласты — запасают питательные вещества
Эндоплазматическая сеть Синтез белка, жиров и др. веществ
Аппарат Гольджи Транспорт и секреция веществ
 Рибосомы  Синтез белка
 Клеточный центр Участвует в делении клетки, формировании жгутиков и ресничек
 Вакуоль  Запасает воду, минеральные и органические вещества

Источник: http://kid-mama.ru/biologiya-6-klass-rasteniya-bakterii-griby-lishajniki/stroenie-rastitelnoj-kletki/

Клеточное строение растительного организма : Мир растений (Растения) : Виртуальная школа БАКАЙ

Рассмотрим строение растительной клетки под микроскопом.
Видны продолговатые клетки, плотно прилегающие одна к другой. Каждая клетка имеет плотную прозрачную оболочку, в которой местами есть более тонкие участки – поры. Под оболочкой находится живое бесцветное вязкое вещество – цитоплазма.

Цитоплазма медленно движется. Движение цитоплазмы способствует перемещению в клетках питательных веществ и воздуха. При сильном нагревании и замораживании цитоплазма разрушается, и тогда клетка погибает. В цитоплазме находится небольшое плотное тельце – ядро, в котором можно различить ядрышко.

С помощью электронного микроскопа было установлено, что ядро имеет очень сложное строение.
Почти во всех клетках, особенно в старых, хорошо заметны полости – вакуоли (от латинского слова “вакуус” – пустой). Они заполнены клеточным соком.

Клеточный сок – это вода с растворенными в ней сахарами и другими органическими и неорганическими веществами.
В цитоплазме растительной клетки находятся многочисленные мелкие тельца – пластиды. При большом увеличении пластиды хорошо видны. В клетках разных органов растений число их различно.

От цвета пластид и от красящих веществ, содержащихся в клеточном соке, зависит окраска тех или иных частей растений. Зеленые пластиды называют хлоропластами.
Все органы растений состоят из клеток. Следовательно, растение имеет клеточное строение, и каждая клетка – это микроскопическая составляющая часть растения.

Клетки прилегают одна к другой и соединены особым межклеточным веществом, которое находится между оболочками соседних клеток. Если все межклеточное вещество разрушается, клетки разъединяются.
Нередко живые растущие клетки всех органов растения несколько округляются.

При этом их оболочки местами отходят друг от друга; в этих участках межклеточное вещество разрушается. Возникают межклетники, заполненные воздухом. Сеть межклетников соединяется с воздухом, окружающим растение, через особые межклетники, расположенные на поверхности органов.

Каждая живая клетка дышит, питается и в течение определенного времени растет. Вещества, необходимые для питания, дыхания и роста клетки, поступают в нее из других клеток и из межклетников, а все растение получает их из воздуха и почвы. Сквозь клеточную оболочку проходят в виде растворов почти все вещества, необходимые для жизни клетки.

Деление клетки

Делению клетки предшествует деление ее ядра. Перед делением клетки ядро увеличивается и в нем становятся хорошо заметными тельца обычно циллиндрической формы – хромосомы (от греческих слов “хромо” – цвет, “сома” – тело). Они передают наследственные признаки от клетки к клетке.

Перед деление число хромосом удваивается. Все живое содержимое клетки также равномерно распределяется между новыми клетками. Итак, деление клетки начинается с деления ядра и каждая из образовавшихся клеток содержит то же самое число хромосом, что и ядро исходной клетки.

Молодые клетки, в отличие от старых, неспособных делиться, содержат много мелких вакуолей. Ядро молодой клетки располагается в центре. В старой клетке обычно имеется одна большая вауоль, а цитоплазма, в которойнаходится ядро, прилегает к клеточной оболочке.

Молодые, недавно возникшие клетки увеличивются и снова делятся. Так в результате деления и роста клеток растут все органы растения.

Ткани клетки

Группу клеток, имеющих сходное строение и выполняющих одинаковые функции, называют тканью. Органы растений сложены разными тканями.
Ткань, клетки которой постоянно делятся, называют образовательной.
Покровные ткани защищают растения от неблагоприятных воздействий внешней среды.

За проведением веществ во все органы растения отвечает проводящая ткань.
В клетках запасающей ткани откладываются в запас питательные вещества.
В зеленых клетках ткани листьев и молодых стеблей происходит фотосинтез. Такие ткани называют фотосинтезирующими.

Механическая ткань придает прочность органам растения.

Источник: http://school.bakai.ru/rasteniya/kletochnoe_stroenie_rastitelinogo_organizma

Строение растительной клетки

ИСТОРИЯ РАЗВИТИЯ КЛЕТКИ

Клетка – основная структурно-функциональная единица животных, растений и грибов. Понятие о клетке и ее строении возникло в связи с изобретением микроскопа в 1590 г. голландскими мастерами братьями Янсен. Впервые увидел и описал клетку английский естествоиспытатель Роберт Гук в 1665 г.

Рассматривая в микроскоп тонкий срез бутылочной пробки, он обнаружил, что пробка состоит из многочисленных камер, и назвал их клетками. М. Мальпиги (1671) и Н. Грю (1682) первыми описали микроскопическое строение органов растений, подтвердив их клеточное строение. В 1676 г. А.

Левенгук открыл мир микроскопических растений и описал окрашенные включения в клетках высших растений и водорослей. До XIX века существовало представление, что основные функции клетки связаны с ее стенкой, а содержимому клетки отводилась второстепенная роль. С усовершенствованием микротехники расширялись и познания о внутреннем содержимом клетки. Так, в 1831 г. Р.

Браун обнаружил в клетке ядро и описал его как важнейшее образование. В 1839 г. Я. Пуркинье ввел новый термин «протоплазма», т.е. живое содержимое клетки. Обобщив все накопленные знания в области клетки, ботаник М. Шлейден (1838) и зоолог Т.

Шванн (1839) сформулировали кле- точную теорию, основным утверждением которой было: клетка есть единая элементарная и функциональная структура всех живых организмов. В 1858 г. Р. Вирхов добавил новое положение к клеточной теории, обосновав принцип преемственности клеток путем деления (каждая клетка образуется из клетки).

В 1946 г. с применением электронного микроскопа была установлена тонкая структура клетки, получившая название ультраструктуры.

Строение растительной клетки

Все растения являются эукариотами, так как имеют оформленное ядро (греч. karyon – ядро). Более примитивные организмы – бактерии и, в частности, цианобактерии (сине-зеленые водоросли), являющиеся прокариотами (доядерными организмами), отличаются по ряду признаков от эукариот (табл. 1.1).

Таблица 1.1.Основные особенности прокариот и укариот

Окончание таблицы

Примечание. ДНК – дезоксирибонуклеиновая кислота, ЭПС – эндоплазматическая сеть.

ПРОТОПЛАСТ

Во взрослой растительной клетке (рис. 1.1) выделяют: протопласт– живое содержимое клетки и производные протопласта. Протопласт представляет собой цитоплазму и ядро; к производным протопласта относят целлюлозную клеточную стенку (оболочку) и вакуоль.

В состав цитоплазмы входит гиалоплазма – внутренняя жидкая среда клетки, в которую погружены клеточные органеллы. Для живых растительных клеток характерно движение цитоплазмы вме сте с погруженными в нее органеллами и ядром, называемое током цитоплазмы, или циклозом.

Гиалоплазма представляет собой сложный бесцветный коллоидный раствор слизистой консистенции.

Одним из проявлений живого состояния гиалоплазмы является переход коллоидной системы с преобладанием дисперсионной среды – воды (золя) в гель, находящийся в более твердом состоянии, и обратно.

Гиалоплазма содержит воду (70-90%), в которой растворены ионы минеральных солей, играющие важную роль в создании осмотического давления в клетке. В состав гиалоплазмы входят также растворимые белки, рибонуклеиновая кислота (РНК), полисахариды, липиды.

Читайте также:  Введение в биологию - биология

Вещества, входящие в состав живой клетки, объединяют в понятие конституционные, т.е. участвующие в обмене веществ. Основными классами конституционных органических веществ являются белки, нуклеиновые кислоты, липиды и углеводы.

Рис. 1.1.Схема строения растительной клетки (электронная микроскопия):

1 – ядро; 2 – ядерная оболочка (две мембраны – внутренняя и внешняя и перинуклеарное пространство); 3 – ядерная пора; 4 – ядрышко; 5 – конденсированный хроматин; 6 – диффузный хроматин; 7 – клеточная стенка; 8 – плазмалемма; 9 – плазмодесмы; 10 – эндоплазматическая агранулярная сеть; 11 – гранулярная эндоплазматическая сеть; 12 – митохондрии; 13 – свободные рибосомы; 14 – лизосомы; 15 – хлоропласт; 16 – диктиосома аппарата Гольджи; 17- гиалоплазма; 18 – тонопласт; 19 – вакуоль с клеточным соком

Белки – вещества, определяющие строение и свойства живой материи. На их долю приходится основная масса органических веществ клетки. Они участвуют в построении структуры и функциях всех клеточных органелл.

Белки выполняют важную ферментативную функцию, постоянно участвуя в процессах синтеза и распада конституционных веществ. Белки могут быть и эргастическими веществами клетки, т.е.

откладываться в запас, а также выполнять сократительную, транспортную функции и могут служить источником энергии.

Белки – это биополимеры, состоящие из аминокислот, соединенных пептидными связями. Из известных 40 аминокислот в состав белков входят 20. Простые белки – протеины – состоят только из аминокислот и откладываются в клетке в качестве запасных веществ.

Простые белки могут соединяться с углеводами (гликопротеиды), нуклеиновыми кислотами (нуклеопротеиды), жирными кислотами (липопротеиды), и тогда они называются сложными белками – протеидами.

Протеиды являются конституционными белками, так как входят в состав цитоплазмы и ядра.

Нуклеиновые кислоты (ДНК и РНК) – важная группа фосфорсодержащих биополимеров, обеспечивающая хранение и передачу наследственной информации. Мономером нуклеиновых кислот является нуклеотид, включающий в себя азотистое основание, сахар и остаток фосфорной кислоты. Для каждого вида характерен свой ну- клеотидный состав нуклеиновых кислот.

Молекула ДНК состоит из 2 полинуклеотидных антипараллельных цепей, закрученных в двойную спираль вокруг центральной оси. Цепи выстраиваются по типу комплементарности между азотистыми основаниями, образующими между собой водородные связи.

Структура ДНК описана в 1953 г. Д. Уотсоном и Ф. Криком. РНК, в отличие от ДНК, представляет собой одноцепочечную молекулу (табл. 1.2). ДНК и РНК могут находиться как в ядре, так и в цито- плазме, а также в митохондриях и хлоропластах.

Липиды (фосфолипиды) – жироподобные вещества, которые являются структурными компонентами клетки, так как входят в состав клеточной мембраны (плазмолемма, тонопласт). Протопласт растительной клетки содержит: простые липиды (жирные масла), полимерные липиды (воск, кутин, суберин) и сложные липиды (липоиды, или жироподобные вещества). Простые липиды состоят из остатков

Таблица 1.2.Состав нуклеиновых кислот (ДНК, РНК)

жирных кислот и спиртов (жиры, воски). Сложные липиды – это комплексы липидов, их соединения с белками (липопротеиды), фосфорной кислотой (фосфолипиды), сахарами (гликолипиды). Некоторые пигменты (каротиноиды) также относят к сложным липидам. Липиды являются одним из основных компонентов биологических мембран, а также составляют их энергетический резерв.

Углеводы входят в состав гиалоплазмы в виде моносахаридов (глю- коза, фруктоза), дисахаридов (сахароза, мальтоза и др.) и полисахаридов (крахмал, гликоген).

У растений моносахариды являются первичным продуктом фотосинтеза и используются для биосинтеза полисахаридов, аминокис- лот, жирных кислот и др.

Углеводы запасаются в виде крахмала как энергетический резерв растений.

Некоторые углеводные полимеры служат опорным материалом жестких клеточных стенок (целлюлоза) или выполняют функцию цементирующего материала в межклеточном пространстве (пектины).

Дата добавления: 2016-05-30; просмотров: 3355;

Источник: https://poznayka.org/s3801t1.html

Строение животной и растительной клетки

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Строение животной (слева) и растительной (справа) клеток

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10—20% ее общего объема.

Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому.

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы.

Строение клетки по данным электронной микроскопии

Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100—120 Å. Эти образования названы эндоплазматическим комплексом.

В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках животных и низших растений — центросома, животных — лизосомы, у растений — пластиды.

Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Центриоли (клеточный центр) состоит из двух компонентов: триоли и центросферы — особым образом дифференцированного участка цитоплазмы. Центриоли состоят из двух мелких округлых колец. В электронном микроскопе видно, что эти тельца представляют собой систему строго ориентированных трубочек.

Митохондрии в клетках бывают разной формы: палочковидные, нулообразные и др. Полагают, что форма их может изменяться зависимости от функционального состояния клетки. Размеры митохондрии варьируют в значительных пределах: от 0,2 до 2—7 мк. клетках разных тканей они располагаются или равномерно по цитоплазме, или с большей концентрацией в определенных участках.

Установлено, что митохондрии принимают участие в окислительных процессах обмена веществ клетки. Митохондрии состоят белков, липидов и нуклеиновых кислот. В них найден ряд ферментов, участвующих в аэробном окислении, а также связанных реакцией фосфорилирования.

Полагают, что в митохондриях происходят все реакции цикла Кребса: большая часть освобождаются при этом энергии расходуется на работу клетки.

Строение митохондрий оказалось сложным. Поданным электрон-микроскопических исследований, они представляют собой тельца, суженные гидрофильным золем заключенные в избирательно проницаемую оболочку — мембрану, толщина которой около 80 Å. Митохондрии имеют слоистую структуру в виде системы утренних гребней-кристаллов, толщина которых 180—200 Å.

Они отходят от внутренней поверхности мембран, образуя кольцобразные диафрагмы. Предполагается, что митохондрии размножаются путем деления. При делении клетки распределение их по крайним клеткам не подчиняется строгой закономерности, так как % по-видимому, могут быстро размножаться до необходимого клетки количества.

По форме, величине и роли в биохимических процессах митохондрии являются характерными для каждого типа ни и вида организма.

При биохимических исследованиях цитоплазмы в ней найдены микросомы, которые представляют собой фрагменты мембран с структурой эндоплазматической сети.

В значительном количестве в цитоплазме находятся рибосомы размерам они варьируют от 150 до 350 Å и в световом микроскопе невидимы.

Особенностью их является высокое содержание РНК и белков: около 50% всей клеточной РНК находится в рибосомах, что указывает на большое значение последних в деятельности клетки. Установлено, что рибосомы участвуют в синтезе клеточных белков под контролем ядра.

Репродукция самих рибосом также контролируется ядром; в отсутствии ядра они теряют способность синтезировать цитоплазматические белки и исчезают.

В цитоплазме имеется также аппарат Гольджи. Он представляет систему гладких мембран и канальцев, располагающихся вокруг ядра или полярно. Предполагают, что этот аппарат обеспечивает выделительную функцию клетки. Тонкое строение его остается еще не выясненным.

Органоидами цитоплазмы являются также лизосомы — литические тела, выполняющие функцию пищеварения внутри клетки. Они открыты пока только в животных клетках.

Лизосомы содержат активный сок — ряд ферментов, способных расщеплять белки, нуклеиновые кислоты и полисахариды, поступающие в клетку.

В случае если мембрана лизосомы разрывается и ферменты переходят в цитоплазму, то они «переваривают» другие элементы, цитоплазмы и приводят к растворению клетки — «самопоеданию».

Для цитоплазмы растительных клеток характерно присутствие пластид, которые осуществляют фотосинтез, синтез крахмала и пигментов, а также белков, липидов и нуклеиновых кислот. По окраске и выполняемой функции пластиды могут быть разделены на три группы: лейкопласты, хлоропласты и хромопласты.

Лейкопласты — бесцветные пластиды, участвующие в синтезе крахмала из сахаров. Хлоропласты представляют белковые тела более плотной консистенции, чем цитоплазма; наряду с белками они содержат много липидов. Белковое тело (строма) хлоропластов несет пигменты, в основном — хлорофилл, чем и объясняется их зеленая окраска, хлоропласты осуществляют фотосинтез.

Хромопласты содержат пигменты — каротиноиды (каротин и ксантофилл).

Пластиды размножаются путем прямого деления и, по-видимому, не возникают в клетке заново. До сих пор нам не известен принцип их распределения по дочерним клеткам при делении.

Возможно, что строгого механизма, обеспечивающего равное распределение, не существует, так как необходимое число их может быстро восстанавливаться.

При бесполом и половом размножении растений через материнскую цитоплазму могут наследоваться признаки, определяемые свойствами пластид.

Здесь мы не будем останавливаться на особенностях изменений отдельных элементов клетки в связи с выполняемыми ими физиологическими функциями, так как это входит в область изучения цитологии, цитохимии, цитофизики и цитофизиологии.

Однако следует отметить, что в последнее время исследователи приходят к очень важному выводу в отношении химической характеристики органелл цитоплазмы: ряд из них, такие как митохондрии, пластиды и даже центриоли, имеет собственную ДНК.

Какова роль ДНК и каково состояние, в котором она находится, остается пока неясным.

Мы познакомились с общей структурой клетки лишь для того, чтобы в последующем оценить роль отдельных ее элементов в обеспечении материальной преемственности между поколениями, т. е. в наследственности, ибо все структурные элементы клетки принимают участие в ее сохранении.

Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава.

Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.

Источник: http://www.activestudy.info/stroenie-kletki/

Ссылка на основную публикацию