Клеточный цикл – биология

Самая удобная и увлекательная подготовка к ЕГЭ

Клеточный цикл - биология

Совокупность хромосом, содержащихся в ядре, называется хромосомным набором. Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.

Пшеница твёрдая 28 Гидра 32
Пшеница мягкая 42 Дождевой червь 36
Рожь 14 Таракан 48
Кукуруза 20 Пчела 16
Подсолнечник 34 Дрозофила 8
Картофель 48 Кролик 44
Огурец 14 Шимпанзе 48
Яблоня 34 Человек 46

Соматические клетки обычно диплоидны (содержат двойной набор хромосом — 2n). В этих клетках хромосомы представлены парами. Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, размером и формой хромосом, называют кариотипом. Хромосомы, принадлежащие к одной паре, называются гомологичными.

Одна из них унаследована от отцовского организма, другая — от материнского. Хромосомы разных пар называются негомологичными. Они отличаются друг от друга размерами, формой, местами расположения первичных и вторичных перетяжек. Хромосомы, одинаковые у обоих полов, называются аутосомами.

Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.

Половые клетки гаплоидны (содержат одинарный набор хромосом — n). В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Деление клеток

Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

Тип Хромосомный набор Характеристика
Соматические 2n Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые 1n Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Клеточный цикл

Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды.

Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл.

В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М.

Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).

Интерфаза — подготовка клетки к делению — состоит из трёх периодов.

Периоды интерфазы

Периоды Число хромосом и хроматид Процессы
Пресинтетический (G1) 2n2c Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S) 2n4c Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2) 2n4c Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Митоз

Митоз — тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. В результате митоза из одной диплоидной клетки образуется две диплоидные, генетически идентичные материнской.

Митоз состоит из четырёх фаз.

Фазы митоза

Фазы Число хромосом и хроматид Процессы
Профаза 2n4c Хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза 2n4c Хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза 2n2c Центромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза 2n2c Дочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Мейоз — тип клеточного деления, сопровождающийся редукцией числа хромосом. В результате мейоза из одной диплоидной клетки образуется четыре гаплоидных, генетически отличающиеся от материнской. В ходе мейоза происходит два клеточных деления (первое и второе мейотические деления), причём удвоение числа хромосом происходит только перед первым делением.

Как и митоз, каждое из мейотических делений состоит из четырёх фаз.

Фазы мейоза

Фазы Число хромосом и хроматид Процессы
Профаза I 2n4c Происходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), то есть обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.
Метафаза I 2n4c Происходят процессы, аналогичные процессам метафазы митоза.
Анафаза I 1n2c В отличие от анафазы митоза, центромеры не делятся и к полюсам клетки отходит не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид и скреплённой общей центромерой.
Телофаза I 1n2c Образуются две клетки с гаплоидным набором.
Интерфаза 1n2c Короткая. Репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается.
Профаза II 1n2c Аналогичны процессам во время митоза.
Метафаза II 1n2c Аналогичны процессам во время митоза.
Анафаза II 1n1c Аналогичны процессам во время митоза.
Телофаза II 1n1c Аналогичны процессам во время митоза.

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

У прокариот митоза и мейоза нет. Бактерии размножаются бесполым путём — делением клетки при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.
Кроме того, для бактерий характерен половой процесс — конъюгация.

Читайте также:  Работы И - что это такое?

При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток.

Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Источник: https://examer.ru/ege_po_biologii/teoriya/cikl_kletki

Клеточный цикл

Для того чтобы клетка смогла полноценно разделиться, она должна увеличиться в размерах и создать достаточное количество органоидов. А для того чтобы не растерять наследственную информацию при делении пополам, она должна изготовить копии своих хромосом.

И, наконец, для того чтобы распределить наследственную информацию строго поровну между двумя дочерними клеткам, она должна в правильном порядке расположить хромосомы перед их распределением по дочерним клеткам.

Все эти важные задачи решаются в процессе клеточного цикла.

Клеточный цикл имеет важное значение, т.к. он демонстрирует важнейшие свойства клетки: способность к размножению, росту и дифференцировке. Обмен тоже идёт, но его не рассматривают при изучении клеточного цикла.

Определение понятия

Клеточный цикл – это период жизни клетки от рождения до образования дочерних клеток.

У животных клеток клеточный цикл, как промежуток времени между двумя делениями (митозами),  длится в среднем от 10 до 24 часов.

Клеточный цикл состоит из нескольких периодов (синоним: фазы), которые закономерно сменяют друг друга. В совокупности первые фазы клеточного цикла (G1, G0, S и G2) носят название интерфазы, а последняя фаза называется митозом.

Рис. 1. Клеточный цикл.

Периоды (фазы) клеточного цикла

1. Период первого роста G1 (от английского Growth – рост), составляет 30-40% цикла, и период покоя G

Синонимы: постмитотический (наступает после митоза) период, пресинтетический (проходит перед синтезом ДНК) период.

Клеточный цикл начинается от рождения клетки в результате митоза. После деления дочерние клетки уменьшены в размерах и органоидов в них меньше, чем в норме.

Поэтому “новорожденная” маленькая клетка в первом периоде (фазе) клеточного цкла (G1) растёт и увеличивается в размерах, а также формирует недостающие органоиды. Идёт активный синтез белков, необходимых для ввсего этого.

В результате клетка становится полноценной, можно сказать, “взрослой”.

Чем обычно заканчивается для клетки период роста G1?

  1. Вступллением клетки в процесс дифференцировки. За счёт дифференцировки клетка приобретает специальные особенности для выполнения функций, необходимых всему органу и организму. Запускается дифференцировка управляющими веществами (гормонами), воздействующими на соответствующие молекулярные рецепторы клетки. Клетка, завершившая свою дифференцировку, выпадает из круговорота делений и находится в периоде покоя G0. Требуется воздействие активирующих веществ (митогенов) для того, чтобы она претерпела дедифференцировку и вновь вернулась в клеточный цикл.
  2. Гибелью (смертью) клетки.
  3. Вступлением в следующий период клеточного цикла -синтетический.

2. Синтетический период S (от английского Synthesis – синтез), составляет 30-50% цикла

Понятие синтеза в названии этого периода относится к синтезу (репликации) ДНК, а не к каким-либо другим процессам синтеза. Достигнув определенного размера в результате прохождения периода первого роста, клетка вступает в синтетический период, или фазу, S, в котором происходит синтез ДНК.

За счёт репликации ДНК клетка удваивает свой генетический материал (хромосомы), т.к. в ядре образуется точная копия каждой хромосомы. Каждая хроммосома становится двойной и весь хромосомный набор становится двойным, или диплоидным.

В результате клетка теперь готова поделить наследственный материал поровну между двумя дочерними клетками, не потеряв при этом ни одного гена.

3. Период второго роста G2 (от английского Growth – рост), составляет 10-20% цикла

Синонимы: премитотический (проходит перед митозом) период, постсинтетический (наступает после синтетического) период.

Период G2 является подготовительным к очередному делению клетки. Во время второго периода роста G2 клетка производит белки, требующиеся для митоза, в частности, тубулин для веретена деления; создаёт запас энергии в виде АТФ; проверяет, закончена ли репликация ДНК, и готовится к делению.

4. Период митотического деления M (от английского Mitosis – митоз), составляет 5-10% цикла

Митоз M (синоним: митотический цикл), заключается в том, что клетка правильно делится на две дочерние клетки.

Благодаря механизмам комплементарного синтеза при репликации ДНК в синтетическом периоде и механизму распределения хроматид в митозе каждая дочерняя клетка получает идентичный набор хромосом, являющийся точной копией хромосомного набора материнской клетки.

Короче говоря, за счёт танцевв хромосом, они расределяются пополам и поровну между двумя дочерними клетками, образовавшимися в результате деления. Подробнее о митозе…

После деления клетка оказывается в новой фазе G1, и клеточный цикл завершается.

Рис. 2. Клеточный цикл. Источник изображения: http://pisum.bionet.nsc.ru/kosterin/lectures/lecture9/lecture9.htm

Рис. 3. Клеточный цикл растительных клеток. Источник изображения: http://fizrast.ru/razvitie/rost/osobennosti.html

Регуляция клеточного цикла

На молекулярном уровне переход от одной фазы цикла к другой регулируют два белка – циклин и циклинзависимая киназа (CDK).

Для регуляции клеточного цикла используется процесс обратимого фосфорилирования/дефосфорилирования регуляторных белков, т.е. присоединение к ним фосфатов с последующим отщеплением. Ключевым веществом, регулирующим вступление клетки в митоз (т.е.

её переход от фазы G2 к фазе M), является специфическая серин/треонин-протеинкиназа, которая носит название фактор созревания – ФС, или MPF, от английского maturation promoting factor. В активной форме этот белковый фермент катализирует фосфорилирование многих белков, принимающих участие в митозе.

Это, например, входящий в состав хроматина гистон H1, ламин (компонент цитоскелета, находящийся в ядерной мембране), факторы транскрипции, белки митотического веретена, а также ряд ферментов. Фосфорилирование этих белков фактором созревания MPF активирует их и запускает процесс митоза.

После завершения митоза регуляторная субъединица ФС, циклин, маркируется убиквитином и подвергается распаду (протеолизу). Теперь наступает очередь протеинфосфатаз, которые дефосфорилируют белки, принимавшие участие в митозе, чем переводят их в неактивное состояние. В итоге клетка возвращается в состояние интерфазы.

ФС (MPF) — это гетеродимерный фермент, включающий в себя регуляторную субъединицу, а именно циклин, и каталитическую субъединицу, а именно циклинзависимую киназу ЦЗК (CDK от англ. cyclin dependent kinase), она же p34cdc2; 34 кДа.

Активной формой этого фермента является лишь димер ЦЗК+циклин. Кроме того, активность ЦЗК регулируется путем обратимого фосфорилирования самого фермента.

 Циклины получили такое название потому, что их концентрация циклически изменяется в соответствии с периодами клеточного цикла, в частности, она снижается перед началом деления клетки.

В клетках позвоночных присутствует ряд различных циклинов и циклинзависимых киназ.

Разнообразные сочетания двух субъединиц фермента регулируют запуск митоза, начало процесса транскрипции в G1-фазе, переход критической точки после завершения транскрипции, начало процесса репликации ДНК в S-периоде интерфазы (стартовый переход) и другие ключевые переходы клеточного цикла (на схеме не приведены).В ооцитах лягушки вступление в митоз (G2/M-переход) регулируется путем изменения концентрации циклина. Циклин непрерывно синтезируется в интерфазе до достижения максимальной концентрации в фазе М, когда запускается весь каскад фосфорилирования белков, катализируемый ФС. К окончанию митоза циклин быстро разрушается протеиназами, также активируемыми ФС. В других клеточных системах активность ФС регулируется за счет различной степени фосфорилирования самого фермента.

Источник: http://kineziolog.su/content/kletochnyy-cikl

Клеточный цикл. Интерфаза. Амитоз. Митоз и мейоз | Биология

Клеточный цикл. Интерфаза. Амитоз. Митоз и мейоз

Читайте также:  Жизнь на Земле, Биология

Клеточный цикл – это период жизни клетки от одного деления до другого. Состоит из интерфазы и периодов деления. Продолжительность клеточного цикла у разных организмов разная (у бактерий – 20-30 мин, у клеток эукариот – 10-80 ч).

Интерфаза

Интерфаза (от лат. inter – между, phases – появление) – это период между делениями клетки или от деления до ее гибели. Период от деления клетки до ее гибели характерен для клеток многоклеточного организма, которые после деления утратили способность к нему (эритроциты, нервные клетки и т. п.). Интерфаза занимает приблизительно 90 % времени клеточного цикла.

Интерфаза включает:

1) пресинтетический период (G1) – начинаются интенсивные процессы биосинтеза, клетка растет, увеличивается в размерах. Именно в этом периоде до смерти остаются клетки многоклеточных организмов, которые утратили способность к делению;

2) синтетический (S) – происходит удвоение ДНК, хромосом (клетка становится тетраплоидной), удваиваются центриоли, если они есть;

3) постсинтетический (G2) – в основном прекращаются процессы синтеза в клетке, происходит подготовка клетки к делению.

Деление клетки бывает прямым (амитоз) и непрямым (митоз, мейоз).

Амитоз

Амитоз – прямое деление клеток, при котором не образуется аппарат деления. Ядро делится вследствие кольцевой перетяжки. Не происходит равномерного распределения генетической информации. В природе амитозом делятся макронуклеусы (большие ядра) инфузорий, клетки плаценты у млекопитающих. Амитозом могут делиться клетки раковых опухолей.

Непрямое деление связано с образованием аппарата деления. В аппарат деления входят компоненты, которые обеспечивают равномерное распределение хромосом между клетками (веретено деления, центромеры, если есть – центриоли).

Деление клетки условно можно разделить на деление ядра (кариокинез) и деление цитоплазмы (цитокинез). Последний начинается к концу деления ядра. Наиболее распространены в природе митоз и мейоз.

Иногда встречается эндомитоз – непрямое деление, которое происходит в ядре без разрушения его оболочки.

Митоз

Митоз – это непрямое деление клетки, при котором из материнской образуются две дочерние клетки с идентичным набором генетической информации.

Фазы митоза:

1) профаза – происходит уплотнение хроматина (конденсация), хроматиды спирализируются и укорачиваются (становятся заметными в световой микроскоп), исчезают ядрышки и ядерная оболочка, образуется веретено деления, его нити прикрепляются к центромерам хромосом, центриоли делятся и расходятся к полюсам клетки;

2) метафаза – хромосомы максимально спирализированы и располагаются вдоль экватора (в экваториальной пластинке), гомологичные хромосомы лежат рядом;

3) анафаза – нити веретена деления сокращаются одновременно и растягивают хромосомы к полюсам (хромосомы становятся однохроматидными), самая короткая фаза митоза;

4) телофаза – хромосомы деспирализируются, образуются ядрышки, ядерная оболочка, начинается деление цитоплазмы.

Митоз характерен преимущественно для соматических клеток. Благодаря митозу сохраняется постоянство числа хромосом. Способствует увеличению числа клеток, поэтому наблюдается при росте, регенерации, вегетативном размножении.

Мейоз

Мейоз (от греч. мейозис – уменьшение) – это непрямое редукционное деление клетки, при котором из материнской образуются четыре дочерние, располагающие неидентичной генетической информацией.

Различают два деления: мейоз I и мейоз II. Интерфаза I сходна с интерфазой перед митозом. В постсинтетическом периоде интерфазы процессы синтеза белка не прекращаются и продолжаются в профазе первого деления.

Мейоз I:

– профаза I – хромосомы спирализируются, ядрышко и ядерная оболочка исчезают, образуется веретено деления, гомологичные хромосомы сближаются и слипаются вдоль сестринских хроматид (как молния в замке) – происходит конъюгация, при этом образуются тетрады, или биваленты, образуется перекрест хромосом и обмен участками – кроссинговер, потом гомологичные хромосомы отталкиваются одна от другой, но остаются сцепленными в участках, где состоялся кроссинговер; процессы синтеза завершаются;

– метафаза I – хромосомы располагаются вдоль экватора, гомологичные –двухроматидные хромосомы располагаются одна напротив другой по обе стороны экватора;

– анафаза I – нити веретена деления одновременно сокращаются, растягивают по одной гомологичной двухроматидной хромосоме к полюсам;

– телофаза I (если есть) – хромосомы деспирализируются, образуются ядрышко и ядерная оболочка, происходит распределение цитоплазмы (клетки, которые образовались, гаплоидны).

Интерфаза II (если есть): не происходит удвоения ДНК.

Мейоз II:

– профаза II – уплотняются хромосомы, исчезают ядрышко и ядерная оболочка, образуется веретено деления;

– метафаза II – хромосомы располагаются вдоль экватора;

– анафаза II – хромосомы при одновременном сокращении нитей веретена деления расходятся к полюсам;

– телофаза II – деспирализируются хромосомы, образуются ядрышко и ядерная оболочка, делится цитоплазма.

Мейоз происходит перед образованием половых клеток. Позволяет при слиянии половых клеток сохранять постоянство числа хромосом вида (кариотип). Обеспечивает комбинативную изменчивость.

Клеточный уровеньУровни организации живого

Источник: https://xn—-9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/kletochnyj-tsikl-interfaza-amitoz-mitoz-i-mejoz/

12. Клеточный цикл, его стадии и способы их изучения

Живые организмы состоят из клеток, рост и деление которых нуждается в запрограммированных последовательных событиях и процессах, составляющих клеточный цикл. Некоторые из этих процессов происходят непрерывно, как, например, синтез белков и липидов. Другие, как, например, синтез ДНК, носят прерывистый характер и связаны с процессом клеточного деления.

В каждом клеточном цикле объединяются два динамических и качественно различных периода:

Необходимо подчеркнуть, что процесс клеточного размножения основан на репликации ДНК, синтез которой происходит в периоде S интерфазы клеточного цикла.

Интерфаза является наиболее длительным периодом клеточного цикла (90%), этот период представляет собой этап, когда клетка имеет интенсивную биосинтетическую активность (синтез ДНК, РНК, белков), обеспечивая необходимые условия для осуществления клеточного деления. Интерфаза подразделяется на три периода, известные как:

  • Период G1 – пресинтетический или постмитотический период, во время которого: – возобновляется процесс транскрипции и белкового синтеза, блокированные во время митоза; – происходит деконденсация хроматина – важный процесс для активации транскрипции генов; – происходит реорганизация ядрышек; – клетка содержит диплоидный набор монохроматидных хромосом (2n = 2с).
  • Период S – синтетический период, характеризуется: – полуконсервативной асинхронной репликацией молекул ДНК; – удвоением количества ДНК; – двухроматидными хромосомами (2n = 4с); – параллельным синтезом гистоновых и негистоно- вых белков, участвующих в синтезе и упаковке ДНК; – удвоением центриолей.
  • Период G2 – постсинтетический или премитотический, в котором процессы транскрипции и белкового синтеза происходят с той же интенсивностью, что и в периоде G1, это обеспечивает необходимые условия для митоза.

Митоз и цитокинез. Клеточное деление начинается делением ядра (митоз) и завершается делением цитоплазмы (цитокинез). Митоз и цитокинез занимают короткий период клеточного цикла (10%) и носят название митотического периода. Митоз, однажды начавшись, представляет собой непрерывный процесс. Однако для изучения и описания его условно подразделяют на четыре этапа:

  • профазу,
  • метафазу,
  • анафазу,
  • телофазу.

Профаза характеризуется наличием в ядре двухроматидных хромосом. Эти хроматиды, соединенные на уровне центромеры, представляют собой цитологическую картину процесса репликации ДНК.

Читайте также:  Тип хордовые, биология

Хромосомы сильно конденсируются, утолщаются и становятся видимыми; по обе стороны центромеры образуются по одному кинетохору. В конце профазы исчезает ядрышко и диссоциирует ядерная оболочка.

Одновременно организуется аппарат деления: центриоли перемещаются к противоположным полюсам клетки, формируется веретено деления путем сборки микротрубочек.

 Метафаза. Нити веретена деления связывают центриоль и хромосому с помощью кинетохоров. Хромосомы, соединенные с веретеном деления, располагаются в экваториальной плоскости, образуют метафазную пластинку. На этой стадии хромосомы максимально спирализованы и представляют собой оптимальную форму для цитологического изучения.

Анафаза начинается с продольного разделения центромеры каждой хромосомы, расхождения сестринских хроматид и завершается одновременной их миграцией к противоположным полюсам клетки. На этом этапе хромосомы становятся монохроматидными, и клетка содержит тетраплоидный набор хромосом (4n = 4с).

Телофаза. В телофазе заканчивается миграция хромосом к полюсам клетки, у каждого полюса содержится 2n монохроматидных хромосом (диплоидный набор).

Начинается прогрессирующая деспирализация хромосом и возврат наследственного материала в состояние интерфазного хроматина.

Нити веретена деления диссоциируют, вновь появляются ядерные мембраны вокруг каждой группы хромосом, вновь организуются ядрышки.

Цитокинез завершает процесс деления. Происходит разделение цитоплазматической массы на две половины и разделение клеточных органелл. Каждая дочерняя клетка наследует в результате цитокинеза набор клеточных компонентов. Увеличение количества всех компонентов клетки не требует точного контроля.

Если в клетке имеется много молекул или органелл определенного типа, то достаточно того, чтобы число их приблизительно удвоилось за цикл, и они затем примерно поровну разделились между двумя дочерними клетками. Рост органелл происходит задолго до начала цитокинеза. Увеличение количества клеточных органелл реализуется различными путями.

Митохондрии растут и делятся полуавтономно, аппарат Гольджи и ЭПС фрагментируются на пузырьки, которые служат для образования новых клеточных органелл, в то время как рибосомы размножаются путем образования комплекса рРНК и рибосомальных белков.

В отношении ДНК такое удвоение и распределение должно быть совершенно точно, и для этого нужен специальный механизм: репликация ядерной ДНК. Этот механизм обеспечивает образование генетически идентичных клеток, как между собой, так и с материнской клеткой.

Митотическое деление является основой размножения соматических клеток, обеспечивает эмбриогенез, рост многоклеточного организма, определяет биомассу организма и регенерацию тканей.

В настоящее время цитометрию принято подразделять на:

Первый вариант цитометрии осуществляется с помощью специальных приборов – проточных цитометров и сортеров. Для статической цитометрии могут быть использованы конфокальные микроскопы, а также более простые и дешевые системы анализа изображений, смонтированные на обычных люминесцентных микроскопах.

Существует много методик, которые с одинаковым успехом можно воспроизводить как с помощью проточной, так и статической цитометрии. Более того, статическая цитометрия в некоторых случаях позволяет получить более обширную информацию о клетках, причем ее производительность ненамного меньше проточной.

Метод проточной цитометрии сформировался за последние 30 лет на основе отдельных опытов по подсчету числа частиц и определению их размеров.

В настоящее время выпускают два основных типа приборов для проточной цитометрии :

  • простые в использовании аппараты, которые могут измерять флуоресценцию при двух и более длинах волн и светорассеяние под углом около 10º (малоугловое прямое рассеяние) и 90º;
  • большие клеточные сортеры, которые не только измеряют пять и более клеточных или ядерных параметров, но и сортируют частицы с заданным набором этих параметров.

Принципы проточной цитометрии весьма просты. Клетки или ядра поодиночке пересекают сфокусированный световой пучок, обычно лазерный.

Свет определенной длины возбуждает молекулы флуоресцирующих красителей, связанных с различными клеточными компонентами, при этом при этом может происходить одновременное возбуждение нескольких разных красителей, что позволяет оценить сразу несколько клеточных параметров.

Свет, испускаемый красителями, собирают с помощью системы линз и зеркал и разлагают на компоненты. Световые сигналы детектируют, преобразуют в электрические импульсы и далее в форму, удобную для компьютерной обработки и хранения информации.

Методом проточной цитометрии можно получать самые разные данные:

  • определять содержание в клетке ДНК и РНК, суммарное количество белков и количество специфических белков, узнаваемых моноклональными антителами,
  • исследовать клеточный метаболизм (например, измерять внутриклеточный рН), изучать транспорт ионов кальция и кинетику ферментативных реакций.

Источник: https://vseobiology.ru/tsitologiya/1507-12-kletochnyj-tsikl-ego-stadii-i-sposoby-ikh-izucheniya

Деление клеток. Клеточный цикл – Биология – определения и термины, Зоология, Эволюция, Экология

Жизненный цикл клетки — период существования клетки между двумя делениями или от деления до гибели клетки.

Гетерокаталитическая интерфаза — период жизненного цикла клетки, когда она выполняет все характерные для нее функции.

Митотический цикл — период жизненного цикла клетки, когда происходит подготовка клетки к делению и непосредственно деление.

Интерфаза — фаза митотического цикла, во время которой клетка подготавливается к митотическому делению, осуществляется репликация ДНК, т. е. происходит удвоение генетического материала клетки.

Профаза — первая фаза митоза, во время которой происходит исчезновение ядрышек и ядерной мембраны, конденсация хромосом, образования веретена деления. Веретено деления располагается определенным образом. Один конец нити веретена деления прикрепляется к центриоли на полюсе клетки, второй — к центромере хромосом.

Метафаза — фаза митотического цикла, когда происходит формирование метафазной пластинки из двухроматидных хромосом в  области экватора клетки.

Анафаза — фаза митотического цикла, когда происходит передвижение хромосом к полюсам клетки. Передвижение хромосом связано с сокращением нитей веретена деления, которые тянут за собой хромосомы к соответствующим полюсам.

Телофаза — фаза митотического цикла, когда происходит деконденсация хромосом, восстановление исчезнувших ядрышек, ядерной мембраны непосредственно деление цитоплазмы клетки.

Амитоз — процесс деления ядра клетки, когда не происходит перестройки хромосом, их распределение в дочерних клетках осуществляется произвольно. При амитозе непосредственного деления клетки может не происходить.

Мейоз — один из этапов гаметогенеза. В составе мейоза выделяют два периода: редукционный и уравнительный.

Интерфаза 1 — процесс подготовки клеток к мейотическоу делению. Процессы, происходящие во время этого периода, аналогичны интерфазе митотического деления.

Профаза 1 — стадия мейоза, во время которой помимо событий, характерных для профазы митоза, происходит конъюгация и кроссинговер хромосом.

Конъюгация хромосом — процесс взаимного сближения хромосом и расположения их таким образом, что соответственные их участки находятся на одинаковом уровне.

Кроссинговер — процесс обмена соответсвующих участков конъюгированных хромосом.

Метафаза 1 — фаза мейоза, когда происходит образование на экваторе клетки метафазной пластинки, образованной бивалентами — двухроматидными хромосомами.

Анафаза 1 — фаза мейоза, когда к противоположным полюсам расходятся двухроматидные хромосомы за счет сокращения нитей веретена деления.

Телофаза — фаза мейоза, во время которой происходит восстановление ядерной мембраны и деление цитоплазмы клетки.

Профаза 2 — фаза мейоза, когда происходит образование веретена деления.

Метафаза 2 — происходит образование метафазной пластинки на экваторе клетки.

Анафаза 2 — фаза мейоза, когда происходит деление двухроматидных хромасом на отдельные хроматиды и расхождение их к противоположным полюсам.

Телофаза 2 — аналогична телофаза митоза.

Источник: http://mybiologiya.net/obmen-veschestv-i-energii-v-organizme/delenie-kletok-kletochniy-tsikl

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]