Генетика человека как наука, Биология

Генетика человека как наука, БиологияДолгие годы люди пытались решить проблему, как понять генетику. Сейчас на то уходят миллиарды долларов и трудятся лучшие умы человечества.

Многие люди задаются вопросом о том, зачем, вообще, изучать генетику. Когда мне приходилось объяснять эту тему в школе или университете, я спрашивал у учащихся простой вопрос: у мамы вторая группа крови, у папы первая, а у вас четвертая. Любит ли мама папу?

Безусловно, знания основ генетики найдут своё применение в вашей жизни. Но здесь возникает другая проблема: как понять генетику, избежав сложных и непонятных определений и формулировок.

Конечно же, изучая данную дисциплину хочется ограничится, если можно так сказать, курсом генетики для начинающих, или как модно сейчас говорить курсом генетики для чайников, не углубляться в сложный понятийный аппарат специальных знаний.

Потому предлагаю всем желающим попробовать разобраться в ней вместе.

Главное о генетике

Генетика человека как наука, БиологияСовременные разделы генетики – это 7 почти самостоятельных отраслей.

Генетика – это наука об основных закономерностях наследственности и изменчивости. Начало генетики лежит еще в доисторических временах. Уже в 4 тысячелетии до нашей эры человек понимал, что некоторые признаки передаются от одного поколения к другому. Отбирая, из природных популяций, определённые организмы и скрещивая их между собой, человечество создавало улучшенные породы животных и сорта растений, обладающие свойствами необходимыми человеку. К примеру, известно, что у жителей древнего Вавилона было, своего рода, руководство по селекции лошадей.

Генетика человека как наука, БиологияНачало генетики положили еще в далекой древности при селекции лошадей.

Основы же современных представлений о механизмах наследственности были заложены лишь в середине XIX века. Изначально закономерности изучались лишь на основании внешних, фенотипических – если использовать терминологию, признаков. Так один австрийско-чешский монах предопределил создание этой науки, наблюдая за цветом и формой горошин.

Понимание механизмов наследственности сделало возможным применение к проблеме наследственности методов смежных дисциплин, сделав генетику сложным комплексным разделом биологической науки. Генетика, как раздел науки является определяющим в биологии, так как воплощает основополагающий принцип живого.

Давайте разберемся – что же сегодня представляет наука о наследственности и изменчивости живых организмов и методах управления ими. Каковы основные задачи генетики, как науки и её основные разделы?

Предмет и задачи генетики

Генетика человека как наука, БиологияГенетика, как раздел науки, изучает наследственность

Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков. Благодаря наследственности некоторые виды (к примеру, кистеперая рыба латимерия, жившая еще в девонский период) оставались на протяжении миллионов лет почти неизменными. В то же время, существование различий у особей как разных видов, так и у одного – свидетельствует о неразрывной связи наследственности с изменчивостью. Изменчивость выражается в отличие особей отдельных поколений от своих родителей и друг от друга.

Следовательно, наследственность, являясь консервативной, обеспечивает сохранение свойств и признаков организмов на протяжении многочисленных поколений, а изменчивость обусловливает формирование в результате изменения генетической информации или условий внешней среды новых признаков. А закономерности наследственности и изменчивости обуславливают задачи генетики, как науки.

Генетика человека как наука, БиологияОсновной задачей генетики являться изучение наследственной информации

К основным задачам генетики относятся:

  • исследование механизмов хранения и передачи наследственной информации потомкам от родительских форм;
  • исследование механизмов реализации генетической информации в виде свойств и признаков организмов в ходе их индивидуального развития;
  • исследование типов, механизмов и причин изменчивости;
  • исследование взаимосвязи процессов наследственности, изменчивости и отбора.

Современные разделы генетики

Современные разделы генетики разнообразны. Эта комплексная наука, занимающаяся как вопросами банальной селекции, так и сложнейшей генной инженерией и археогенетики, проникая во все отрасли биологического знания.

Перечислим основные разделы генетики кратко – это классическая, популяционная, молекулярная генетика и генная инженерия, генетика человека, биохимическая и радиационная генетика. Кроме этих разделов имеются отдельные направления и подразделы.

Так существует судебно-медицинская и криминалистическая генетика, спортивная генетика, а основными разделами генетики человека являются антропогенетика – изучающая наследственность и изменчивость признаков человеческого организма в норме и медицинская генетика.

Особенности и сложности генетических исследований человека

Как известно, все общие закономерности наследственности и изменчивости присущие другим живым организмам, характерны для человека. Однако как объект генетических исследований человек не очень удобен.

Во-первых, его кариотип представлен большим числом хромосом, во-вторых, длительный период полового созревания и малоплодность (норма – 1 ребенок на беременность). В третьих, социальный аспект.

Так как человек не стремится обзавестись большим числом потомков, это затрудняет статистический анализ закономерностей генетики.

Хотя бывают и исключения. Согласно книге рекордов Гиннеса, наибольшее число рожденных одной матерью детей равно 69. Жена русского крестьянина из Шуи Федора Васильева в середине XVIII века рожала 27 раз, при этом на свет появилось 16 двойней, 7 тройней и 4 четверни. Из них лишь 2 ребенка умерли в младенчестве.

Наконец, этическая составляющая. Тут исследователи сталкиваются с целым рядом проблем, так как на человеке нельзя проводить эксперименты по гибридизации, т.е. не может проводить интересующие его скрещивания. Обойти эту проблему получилось только у нацистов, но закончилось это Нюрнбергским трибуналом по делу врачей.

Наконец, также этическая проблема биологического отцовства при анализе потомков законных супругов. Так как по оценкам генетиков в экономически развитых странах процент детей, являющихся результатом супружеской измены, достигает 20-30%.

Методы генетики человека

Все эти особенности определили методы, с помощью которых ученым пришлось изучать генетику человека. И в первую очередь стоит сказать о генеалогическом методе, или методе родословных. По сути это графическое изображение данных о наличии какого-либо изучаемого признака и степени родства у группы родственников.

Генетика человека как наука, БиологияГенеологическое древо Симпсонов

Данный метод позволяет установить характер и тип наследования признака.

Вторым по важности методов в генетике человека и до сих пор является близнецовый метод, который основан на сравнении степеней изменчивости у разных групп близнецов. В первую очередь интерес представляют однояйцевые близнецы, появляющиеся в результате полиэмбрионии.

Этот термин происходит от греч. «poli» — много и «embrion» — зародыш и обозначает процесс развития из одной оплодотворенной яйцеклетки нескольких эмбрионов, вследствие чего однояйцевые близнецы оказывается идентичными близнецами. Т.е.

все фенотипические различия между ними определяются действием факторов внутренней и внешней среды, но никак не генотипа. Особое значение данный метод приобретает при изучении заболеваний имеющих наследственную предрасположенность, т.е.

зависящих как от генотипа, так и факторов внешней среды (язвенные болезни, атеросклероз, гипертония и пр.).

Генетика человека как наука, БиологияБлизнецы

Близнецовые (многоплодные) беременности не являются нормой для человека – более половины из них до недавних пор заканчивались ранней внутриутробной гибелью близнецов или их мертворождением.

Естественная частота многоплодных беременностей составляет 2-4 процента, однако с развитием техники гормональной стимуляции созревания яйцеклеток при лечении определенных видов женского бесплодия она в последние годы увеличилась.

Генетика человека как наука, БиологияЭволюция

Также применяется популяционно-статистический метод, который основан на законе Харди-Вайнберга. С его помощью можно определять частоты генотипов и аллелей, которые характерны для конкретной популяции людей. Также он позволяет оценить влияние микроэволюционных факторов (изоляции, мутаций и естественного отбора, генетического дрейфа и потока генов).

Отметим цитогенетический метод, применяемый в эволюционных исследованиях (с помощью него была доказана генетическая близость человека и высших приматов) и для диагностики хромосомных заболеваний.

Сравнительно-генетический метод, или метод биомоделирования играющий огромную роль в медицинской генетике, позволяя определять генетические механизмы развития, причины и методы лечения наследственных заболеваний человека, обнаруживаемых и у животных. Ну и конечно важнейший на сегодняшний день молекулярно-генетический метод.

Этот метод позволяет на молекулярном уровне изучать наследственную изменчивость и ее причины и конечно же заслуживает отдельной статьи.

Человек как вид и его эволюция

Последние века Homo sapiens sapiens как биологический вид, несомненно, прогрессирует – расширяется его ареал, увеличивается численность, обладает большим генотипическим разнообразием.

Так на заре своего существования, примерно 1,5 млн. лет назад, численность людей равнялась приблизительно 100 тыс., на начало новой эры – 100 млн., к XIX веку. – 1 млрд., а в XXI – 6 млрд.

Читайте также:  Экологические группы птиц, Биология

Генетика человека как наука, БиологияЭволюция человека

В связи с темпами научно-технического прогресса, явно опережающего биологическую эволюцию человечества, возникает целый ряд глобальных проблем, в том числе и для человека как вида.

Низкое давление естественного отбора ведет к увеличению генетического разнообразия, которое переходит на принципиально новый качественный уровень – а именно накапливаются биологически неблагоприятные наследственные изменения, чему в определенной степени способствует развитие медицины и этических учений. Так как лечение больных наследственными заболеваниями повышает шансы передачи потомкам дефектных аллелей генов, а, следовательно, с учетом не прекращающегося мутационного процесса число людей имеющих наследственные дефекты, хотя и медленно, но неуклонно возрастает. И на сегодняшний день примерно 5% новорожденных появляются с различными наследственными аномалиями.

Таким образом, по прошествии всего полутора веков существования генетика из опытов монаха августинца превратилась в сложную комплексную науку, интегрированную во все области биологической науки, являясь при этом величайшим примером единства науки и практики.

Созданные и продолжающие развиваться и совершенствоваться, в последние годы, методы генетической биотехнологии и инженерии, позволяют по-иному решать множество коренных задач не только генетики и биологии, но и ряда других отраслей науки и промышленности.

То, что когда-то могло показаться многим фантастикой, сейчас становится реальным, и даже повседневным делом.

Надеемся, что данная статья помогла интересующимся разобраться в генетике немного больше. Если Вам нужно срочно купить ответы на билеты по генетике и узнать, какого цвета будут глаза у Вашего будущего ребенка – обращайтесь за помощью к нашим авторам!

Генетика как наука: история развития, основные понятия, значение в жизни человека

Генетика – это наука, изучающая закономерности наследования генетической информации и изменчивость организмов. Основоположник генетики – австрийский ученый Грегор Мендель.

История развития генетики

Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.

Генетика человека как наука, Биология

Выделяют три основных этапа в развитии генетики:

Этап I

Первый этап связан с Грегором Менделем и открытием законов наследственности. Многочисленные исследования и скрещивания животных и растений уже вначале XX ст. полностью подтвердили теории, выдвинутые Менделем. Вклад в развитие генетики сделал биолог В. Иоганнсен, который описал такие понятия как «генотип», «фенотип» и «популяция».

Этап II

Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости.

Этап III

Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.

В 50-60 годах прошлого столетия Ф.Крик и Дж.Уотсон разработали модель ДНК, которая представляла собой двойную спираль, она дала возможность проследить репликацию молекулы ДНК. Это открытие стало выдающимся событием века.

В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.

Основные понятия генетики

  • Наследственность — способность одного поколения живых организмов передавать свои характеристики следующему.
  • Изменчивость — приобретение потомством отличительных признаков в процессе индивидуального развития.
  • Признаки — особые черты строения организма, которые формируются на протяжении жизни и зависят от генетического фона и условий окружающей среды.
  • Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — наименьшая структурная и функциональная единица наследственности.

Входит в состав молекулы ДНК и отвечает за образование и передачу конкретного свойства.

  1. Генотип — набор генов, унаследованных от родителей, которые под влиянием внешних факторов определяют фенотип организма.
  2. Аллельные гены — гены, занимающие одинаковые локусы в гомологичных хромосомах.
  3. Гомозиготы— особи, несущие аллельные гены с одинаковой молекулярной основой.
  4. Гетерозиготы — особи, несущие аллельные гены различной молекулярной структуры.

Генетика человека как наука, БиологияЗаконы и понятия генетики

Законы генетики

Основные законы были сформулированы Менделем, которые он вывел опытным путем, исследуя закономерности наследования на растениях.

Закон единообразия гибридов первого поколения.

Суть закона заключается в следующем: если скрестить два гомозиготных организма, которые кодируют разное проявление одного признака, то потомки в первом поколении будут единообразны. Аллель, который проявился, является доминантным, он подавляет рецессивный признак.

Определить это явление Менделю удалось, используя чистые линии гороха с белыми и пурпурными цветами. После скрещивания, все потомство имело пурпурный окрас цветков.

Закон расщепления.

Скрещивание гетерозигот, полученных в первом поколении, дает расщепление по такому принципу:

  • фенотип 3:1;
  • генотип 1:2:1.
  • Так, менделевский закон подтвердил, что рецессивные признаки никак не изменяются и не теряются, а просто не проявляются в сочетании с доминантным геном.
  • Закон независимого наследования признаков.
  • Скрещивание двух гетерозиготных особей, которые отличаются более чем по двум признакам, дает поколение с разнообразной и независимой комбинацией генов.

Разделы генетики

  1. Классическая генетика изучает закономерности передачи генов.
  2. Цитогенетика исследует структуру хромосом и их участие в передаче наследственной информации.

  3. Молекулярная генетика исследует молекулярные основы наследования признаков путем изучения строения ДНК и РНК.
  4. Биохимическая генетика направлена на изучение влияния генетических факторов на биохимические процессы в живом организме.

  5. Медицинская генетика – изучает наследственные заболевания и разрабатывает эффективное лечение.

Значение генетики

Все чаще рождаются дети с наследственными аномалиями развития. Врожденная патология сказывается на деятельности жизненно важных органов и приводит к росту ранней детской смертности.

  • Неблагоприятная экологическая обстановка вредные привычки родителей приводят к разного рода мутациям, которые сказываются на здоровье человека.
  • На сегодняшний день ученые-генетики сделали много открытий в области медицины, селекции животных и растений, что позволяет целенаправленно влиять на наследственность организмов, предотвращая мутационные процессы.
  • Многие заболевания, как показали исследования, носят генетическую природу:
  • Увеличение количества хромосом (синдром Клайнфельтера);
  • уменьшение (синдром Шерешевского-Тернера);
  • болезни сцепленные с хромосомами (гемофилия, дальтонизм);
  • нарушения обмена веществ (галактоземия).

Теперь, зная причину развития заболевания, ученые разрабатывают методы предотвращения мутаций, которые ведут к врожденным аномалиям.

Селекция животных и растений уже стала самостоятельной наукой, но в основе ее лежат генетические закономерности наследования. Новые сорта растений с высокой урожайностью, ценные породы животных удалось получить, используя законы наследственности и изменчивости.

Фармацевтическая промышленность не обходится без генетической инженерии. Продукция антибиотиков стала возможной благодаря генетической модификации микроорганизмов-продуцентов. Так удалось многократно увеличить скорость синтеза лекарственных средств и уменьшить затраты на производство.

Оцените, пожалуйста, статью. Мы старались:) (11

Генетика. История развития науки — урок. Биология, Общие биологические закономерности (9–11 класс)

Термин «генетика» предложил в (1905) году У. Бэтсон.

Генетика — наука, изучающая закономерности наследственности и изменчивости организмов.

  • Наследственностью называется свойство организмов передавать потомкам особенности строения, физиологические свойства и характер индивидуального развития.
  • Изменчивостью называется способность живых организмов изменять свои признаки.
  • В своём развитии генетика прошла ряд этапов.

Наследственностью люди интересовались очень давно. С развитием сельского хозяйства сформировалась прикладная наука селекция, которая занималась созданием и формированием новых пород животных и сортов растений. Но объяснить механизмы передачи признаков потомкам селекционеры не могли.

Первый этап развития генетики — изучение наследственности и изменчивости на организменном уровне.

Этот этап связан с работами Г. Менделя. В (1865) г. в работе «Опыты над растительными гибридами» он описал результаты своих исследований закономерностей наследования признаков у гороха.

Г. Мендель установил дискретность (отдельность) наследственных факторов и разработал гибридологический метод изучения наследственности.

Читайте также:  История изучения клетки. современная клеточная теория - биология

Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов, которые при слиянии гамет и образовании зиготы не смешиваются, а при формировании новых гамет наследуются независимо друг от друга.

В (1909) г. В. Иоганнсен назвал эти факторы генами.

Значение открытий Г. Менделя оценили только после того, как его результаты были подтверждены в (1900) г. тремя биологами независимо друг от друга: Х. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Этот год считается годом возникновения науки генетики.

Менделевские законы наследственности заложили основу теории гена, а генетика превратилась в быстро развивающуюся отрасль биологии.

В (1901)–(1903) гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

  1. Второй этап развития генетики — изучение закономерностей наследования признаков на хромосомном уровне.
  2. Былаустановлена взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз).
  3. Изучение строения клетки привело к уточнению строения, формы и количества хромосом и помогло установить, что гены — это участки хромосом.

В  (1910)–(1911) гг. американский генетик Т. Г. Морган и его сотрудники провели исследования закономерностей наследования на мушках дрозофилах. Они установили, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.

  • Морган установил также закономерности наследования признаков, сцепленных с полом.
  • Эти открытия позволили сформулировать хромосомную теорию наследственности.
  • Третий этап развития генетики — изучение наследственности и изменчивости на молекулярном уровне.
  • На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория «один генодин фермент»: каждый ген контролирует синтез одного фермента, а фермент контролирует одну биохимическую реакцию.

В (1953) г. Ф. Крик и Дж. Уотсон создали модель молекулы ДНК в виде двойной спирали и объяснили способность ДНК к самоудвоению. Стал понятен механизм изменчивости: любые отклонения в структуре гена, однажды возникнув, в дальнейшем воспроизводятся в дочерних нитях ДНК.

Эти положения были подтверждены экспериментами. Уточнилось понятие гена, был расшифрован генетический код и изучен механизм биосинтеза. Были разработаны методы искусственного получения мутаций и с их помощью созданы новые ценные сорта растений и штаммы микроорганизмов.

В последние десятилетия сформировалась генная инженерия — система приёмов, позволяющих синтезировать новый ген или выделить его из одного организма и ввести в генетический аппарат другого организма.

В последнее десятилетие  (20) века были расшифрованы геномы многих простых организмов. В начала (21) века ((2003) г.) был завершён проект по расшифровке генома человека.

На сегодняшний день существуют базы данных геномов многих организмов. Наличие такой базы данных человека имеет большое значение в предупреждении и исследовании многих заболеваний.

Генетика человека

Практически все науки, созданные человеком, преследуют единую цель – удовлетворение познавательных интересов человека и применение полученных знания на практике для достижения человеком определенных целей.

Не является исключением и генетика.

Задолго до появления генетики человечество стремилось разгадать тайну наследственности внешних и внутренних признаков человеческого организма, бороться с «родовыми» заболеваниями, преследовавшими целые династии.

С оформлением генетики как самостоятельной отрасли биологии, начали развиваться различные направления этой молодой науки. Ученые изучали микроорганизмы, грибы, растения, животных. Отдельное направление генетики изучало человека.

Определение 1

Генетика человека – это отдельный раздел генетической науки, который изучает особенности проявления наследственности и изменчивости у человека, наследственные заболевания, генетическую структуру популяций человека.

Эта отрасль дает теоретическое обоснование многим отраслям современной медицины. Кроме медицины, генетика человека тесно связана с антропологией и эволюционной теорией, психологией и социологией.

Особенности методов генетики человека

Так как человек – существо биосоциальное, то не все методы, применяемые для исследования природных явлений, могут быть использованы для изучения человека. Некоторые из методов просто неприемлемы по этическим и гуманным соображениям.

Так, например, нельзя осуществлять направленное скрещивание или экспериментировать с мутационным процессом у человека (хотя, в годы второй мировой войны в гитлеровских концлагерях эсэсовские “ученые” проводили бесчеловечные опыты над заключенными).

Кроме того, у человека имеются свои биологические особенности, осложняющие процесс изучения тех или иных явлений. Из-за позднего полового созревания и малочисленного потомства очень сложно вести элементарный статистический анализ.

Поэтому при выборе доступных методов исследования ученые обязаны учитывать особенности и сложности человека как генетического объекта.

Генеалогический метод

Одним из классических методов генетики, широко применяемом в генетике человека, является генеалогический метод. Его суть состоит в изучении родословных (генеалогических древ) семей.

Особое внимание ученые обращают на изучение и анализ распределения аномальных признаков в семьях, обладающих этим признаком (талант к чему-либо или характерный внешний признак, или наследственное заболевание).

Обязательно учитывается и степень родства с носителем данного признака.

Замечание 1

На сегодняшний день этот метод позволил доказать, что большое количество признаков у людей наследуется в полном соответствии с законами Менделя. Доказано, также, что некоторые признаки сцеплены с полом и локализованы в $X$-хромосоме.

Близнецовый метод

Еще один эффективный метод исследования – близнецовый метод. Он состоит в изучении однояйцевых близнецов. Однояйцевые близнецы развиваются из одной яйцеклетки и имеют идентичный генотип. Разнояйцевые близнецы отличаются по генотипу, поскольку разные яйцеклетки оплодотворяются разными сперматозоидами. Поэтому их черты менее сходные, чем у однояйцевых.

Этот метод позволяет судить о взаимоотношениях генотипа и условий среды обитания на развитие человека, о вероятности проявления признаков некоторых заболеваний, передающихся по наследству.

Популяционно-статистический метод

Популяционно-статистический метод позволяет изучать частоты встречаемости генов, определяющих проявление тех или иных наследственных заболеваний и нормальных признаков.

Особое внимание уделяется изучению замкнутых, изолированных популяций людей (горные аулы и кишлаки, поселения в труднодоступных джунглях и других местах, поселения религиозных общин).

Повышение степени кровного родства приводит к переходу рецессивных признаков в гомозиготное состояние и проявление их в фенотипе.

Дерматоглифический метод

Специфическим методом генетики человека является дерматоглифический метод. Он основан на изучении наследственно обусловленных рисунков на кончиках пальцев, ладоней и подошв человека. Эти рисунки уникальные и обусловлены наследственностью.

Их формирование происходит еще во внутриутробном периоде развития человеческого организма.

В отличии от хиромантии, генетика не предсказывает будущее по линиям руки, а изучает особенности проявления унаследованных черт в различных условиях среды обитания человека и характера его деятельности.

ГЕНЕТИКА

Содержание статьи

ГЕНЕТИКА, наука, изучающая наследственность и изменчивость – свойства, присущие всем живым организмам.

Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу.

При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ – быть похожими на своих родителей и отличаться от них – и составляют суть понятий «наследственность» и «изменчивость».

Истоки генетики

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей.

Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности.

В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости.

Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха.

Читайте также:  Формы размножения организмов, Биология

Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки – генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки.

Законы генетики

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами.

Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену.

Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой.

Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Гены – это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом.

У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой – от отца.

Имеются и внеядерные гены (в митохондриях, а у растений – еще и в хлоропластах).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления.

В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития.

Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток).

В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине – другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом – образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Методические подходы

Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.).

Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал.

Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологическийанализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний.

В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну.

Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster.

На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления.

Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности.

Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов.

Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. (см. КЛЕТКА; НАСЛЕДСТВЕННОСТЬ; МОЛЕКУЛЯРНАЯ БИОЛОГИЯ).

Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см. ГЕННАЯ ИНЖЕНЕРИЯ). Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков.

Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации.

Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов.

Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии.

Мы теперь можем глубже исследовать популяционные и эволюционные процессы (см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА), изучать наследственные болезни (см. ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ), проблему раковых заболеваний и многое другое.

В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами.

Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]