Химический состав клетки. неорганические вещества – биология

Химический состав клетки. Неорганические вещества

Атомный состав клетки

Каждая клетка содержит множество химических элементов,участвующих в различных химических реакциях.Химические процессы, протекающие в клетке — одно из основных условий её развития и функционирования. Одних химических элементов в клетке больше, других — меньше.

На атомном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается.

Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов. Условно все элементы клетки можно разделить на три группы.

К макроэлементам относят кислород(65—75 %),углерод(15—18 %),водород(8—10 %),азот(2,0—3,0 %),калий(0,15—0,4 %),сера(0,15—0,2 %),фосфор(0,2—1,0 %),хлор(0,05—0,1 %), магний(0,02—0,03 %),натрий(0,02—0,03 %),кальций(0,04—2,00 %).Такие элементы, как C,O,H,N,S,P входят в состав органических соединений.

Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.

Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.

Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевина мочевины,гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.

Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

Фосфор — входит в состав АТФ, других нуклеиновых кислот(в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).

Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий,входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.

Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции(в том числе в работе почек у человека) и создании буферной системы крови.

Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.

Хлор — поддерживает электронейтральность клетки.

Микроэлементы

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк

Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Селен – участвует в регуляторных процессах организма.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие,ртуть, подавляющую обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят платину ицезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов ещё малопонятны.

Соединения
Неорганические Органические
ВодаМинеральные соли 70—80 %1,0—1,5 % БелкиУглеводыЖиры Нуклеиновые кислотыАТФ, соли и др. вещества 10—20 % 0,2—2,0 % 1—5 % 1,0—2,0 %0,1—0,5 %

Химический элементы входят в состав клеток в виде ионов или компонентов молекул неорганических и органических веществ.

Неорганические вещества

Вода – одно из самых распространенных веществ на Земле и преобладающий компонент всех живых организмов. Среднее количество воды в клетках большинства живых организмов составляет порядка 70% (в клетках медузы – 95%).

Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95 % всей воды клетки; на долю связанной воды, входящей в состав фибриллярных структур и соединенной с некоторыми белками, приходится около 4-5 %%.

Вода обладает рядом свойств, имеющих исключительно важное значение для живых организмом. Исключительные свойства воды определяются структурой ее  молекул. Молекула воды является диполем. Атом кислорода в ней ковалентно связан с двумя атомами водорода. Положительные заряды сосредоточены у атомов водорода, т.к.  кислород электроотрицательнее водорода.

Из-за высокой полярности молекул вода является лучшим из известных растворителей. Вещества, хорошо растворимые в воде называют гидрофильными.

К ним относят многие кристаллические соли, ряд органических веществ – спирты, сахара, некоторые белки (например, альбумины, гистоны). Вещества, плохо или совсем нерастворимые в воде, называют гидрофобными.

К ним относятся жиры, нуклеиновые кислоты, некоторые белки (глобулины, фибриллярные белки).

Высокая теплоемкость воды делает ее идеальной жидкостью для поддержания теплового равновесия клетки и в целом организма. Так как на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).

Вода обладает высокой теплопроводностью, обеспечивая возможность равномерного распределения тепла между тканями организма.

Вода является дисперсионной средой, играющей важную роль в коллоидной системе цитоплазмы, определяет структуру и функциональную активность многих макромолекул, служит основной средой для протекания химических реакций и непосредственным участником реакций синтеза и расщепления органических веществ, обеспечивает транспортировку веществ  в клетке и организме (диффузия, кровообращение, восходящий и нисходящий  ток растворов по телу растения и др. ).

Вода практически не сжимается, создавая тургорное давление и определяя объем и упругость клеток и тканей.

Неорганические ионы

Имеют немаловажное значение для обеспечения жизнедеятельности клетки – это катионы (K+, Na+, Ca 2+, Mg 2+, NH3+) и анионы (Cl-, HPO4 2-, H2PO4-, HCO3-, NO3-) минеральных солей. Концентрация катионов и анионов в клетке и в окружающей её среде резко различна.

Внутри клетки превалируют ионы К+ и крупные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl-.

Вследствие этого образуется разность зарядов внешней и внутренней поверхностей мембраны клетки, между ними возникает разность потенциалов, обуславливающая такие важные процессы как передача возбуждения по нерву или мышце.

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма.

Некоторые неорганические ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

Немаловажные функций в живых организмах выполняют неорганические кислоты и их соли. Соляная кислота входит в состав желудочного сока человека и животных, ускоряя процесс переваривания белков пищи.

Остатки серной кислоты, присоединяясь к нерастворимым в воде чужеродным веществам, придают им растворимость, способствуя к выведению из организма.

Неорганические натриевые и калиевые соли азотистой и фосфорной кислот, кальциевая соль серной кислоты служат важными элементами минерального питания растений, их вносят в почву в качестве удобрений. Соли кальция и фосфора входят в состав костной ткани животных.

Содержащиеся в организме ионы имеют важное значение для поддержания постоянства реакций среды в клетки и в окружающих её растворах, т.е. являются компонентами буферных систем. Наиболее значимые буферные системы млекопитающих – фосфатная и бикарбонатная.

Источник: http://www.biokan.ru/load/lekcii/khimicheskij_sostav_kletki_neorganicheskie_veshhestva/5-1-0-39

2.3 Химический состав клетки. Макро- и микроэлементы

Видеоурок 1: Химический состав клетки. Макро и микроэлементы. Роль химических веществ


Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

Химический состав клетки

Обнаружено, что в клетках живых организмов постоянно содержатся в виде нерастворимых соединений и ионов около 80 химических элементов. Все они подразделяются на 2 большие группы по своей концентрации:

  • макроэлементы, содержание которых не ниже 0,01%;
  • микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Макроэлементы:

  • Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.
  • Азот, кислород, водород, углерод. Это основные компоненты клетки.
  • Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.
  • Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.
  • Магний – компонент хлорофилла. Участвует в синтезе белков.
  • Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

  • Цинк – компонент инсулина;
  • Медь – участвует в фотосинтезе и дыхании;
  • Кобальт – компонент витамина В12;
  • Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;
  • Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.

В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.

Неорганические вещества клетки

Вода. От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:

  • терморегуляции;
  • капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

  • переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;
  • формировании нервных импульсов, имеющих электрохимическую природу;
  • сокращении мышц;
  • свертывании крови;
  • входят в состав белков;
  • фосфат-ион – компонент нуклеиновых кислот и АТФ;
  • карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры. 

Основные классы, имеющиеся в живых организмах:

Углеводы. В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

  • Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.
  • Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.
  • Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.
  • Сахароза (дисахарид) – источник энергии, образуется в растениях.
  • Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.

Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям).

Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м.

Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон.

Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липиднуюструктуру. Жиры входят в основу структуры мембран.

Читайте также:  Закон гомологических рядов изменчивости - биология


Белки или протеины 
являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовыватьмежду собой связи.

Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи.

В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

  • первичная структура – аминокислотная цепочка;
  • вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;
  • третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;
  • четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры. 

Белки выполняют в клетке множество функций:

  • ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;
  • защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.
  • структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;
  • регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы –нуклеотиды, имеющие принципиально общую структуру из:

  • фосфат-группы;
  • дезоксирибозы;
  • азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

  • вместо тиминового нуклеотида – урациловый;
  • рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

  • 3 остатка фосфорной кислоты;
  • аденин;
  • рибозу.

В результате каскадных химических процессов дыхания синтезируется в митохондриях. Основная функция – энергетическая, одна химическая связь в ней содержит почти столько же энергии, сколько получается при окислении 1 г жира.

Предыдущий урок Следующий урок

Источник: https://cknow.ru/knowbase/168-23-himicheskiy-sostav-kletki-makro-i-mikroelementy.html

Неорганические вещества

Вода.

Н2О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела.

Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ.

Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды.

При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде.

Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма.

Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества.

Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли.

Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа.

Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na+, K+, Ca2+, Mg2+.

В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства.

Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н2РО4 и НРО42-. Во внеклеточных жидкостях и в крови роль буфера играют Н2СО3 и НСО3-.

Анионы связывают ионы Н и гидроксид-ионы (ОН-), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки

Белки.

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты.

Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды.

Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи.

Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 1010 – 1012.

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка.

В клетках белки имеют вид спирально закрученных волокон или шариков (глобул).

Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка.

В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи).

Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры.

Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка.

По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10ки и 100ни миллионов раз.

Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др.

Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток.

Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы.

Углеводы, или сахариды – органические вещества с общей формулой (СН2О)n. У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами.

В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза.

Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом.

Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза.

Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих.

Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1г. углеводов освобождается 17,6 кДж (~4,2 ккал).

Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты.

Значение нуклеиновых кислот в клетке очень велико.

Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития.

Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов.

Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Читайте также:  Тип моллюски - биология

Существуют 2 типа нуклеиновых кислот – ДНК и РНК.

ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль.

Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты.

Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Из схемы видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью.

Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи.

В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты.

РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов.

Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций.

Они доставляют аминокислоты к месту синтеза белка, “узнают” (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липоиды.

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами.

Одна из основных функций жиров – энергетическая. В ходе расщепления 1г. жиров до СО2 и Н2О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал).

Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%.

Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии.

Жиры и липоиды выполняют и строительную функцию6 они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции.

У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1м. Образование некоторых липоидов предшествует синтезу ряда гормонов.

Следовательно, этим веществам присуща и функция регуляции обменных процессов.

Источник: http://bio.bobrodobro.ru/13945

Химический состав клетки. Роль органических веществ в ее строении и жизнедеятельности

В клетках живых организмов содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях.

Если проанализировать химический состав клетки, то окажется, что из 109 элементов периодической системы Менделеева в ней обнаруживается большинство, причем клетки бактерий, грибов, растений и животных имеют сходный химический состав. Особенно велико содержание в клетках кислорода, углерода, водорода и азота.

В сумме эти элементы составляют почти 98 % всего содержимого клетки. В состав живых клеток входит ряд относительно простых соединений, которые встречаются и в неживой природе – в минералах, природных водах. Это неорганические соединения.

Вода – одно из самых распространенных веществ на Земле. Она покрывает большую часть земной поверхности. Почти все живые существа состоят в основном из воды. У человека содержание воды в различных органах и тканях варьирует от 20 % в костной ткани, до 85 % в головном мозге.

Около 2/3 массы человека составляет вода, в организме медузы до 95 % воды, даже в сухих семенах растений вода составляет 10–12 %. Вода обладает некоторыми уникальными свойствами.

Свойства эти настолько важны для живых организмов, что нельзя представить жизнь без этого соединения водорода и кислорода.

Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода.

Молекула воды полярна. Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода.

Помимо воды, в числе неорганических веществ клетки нужно назвать соли, представляющие собой ионные соединения. Они образованы катионами калия, натрия, магния и иных металлов и анионами соляной, угольной, серной, фосфорной кислот. Соли играют очень важную роль: создают среду, ускоряют реакции, способствуют выведению веществ и т. д.

Есть элементы, содержание которых в клетке очень мало. Это: сера, хлор, калий, магний, натрий, кальций и железо.

Все остальные элементы содержатся в клетках в количестве ничтожно малом, но при недостатке этих микроэлементов возникают серьезные нарушения обмена веществ. Все эти химические элементы входят и в состав неживой природы.

Таким образом, между химическим составом живых организмов и неживой природой существует принципиальное единство.

Органическими веществами называют сложные углеродсодержащие вещества. Их количество в клетке во много раз превышает количество неорганических соединений. Это углеводы, белки, жиры, нуклеиновые кислоты и АТФ.

Многие органические молекулы представляют собой полимеры, т.е. являются многозвеньевыми цепями. Углеводы и жиры способны в организме превращаться друг в друга. Белки также могут преобразовываться в жиры и углеводы.

Функции углеводов:

Энергетическая (кислородное расщепление глюкозы); Структурная (входят в состав покровов, хрящей); Участвуют в синтезе других органических веществ (например, жиров);

Углеводы являются источником метаболической воды в организме (при расщеплении глюкозы до конечных продуктов).

Жиры в клетке выполняют следующие функции:

Входят в состав внутриклеточных структур; Выделяют энергию в результате процессов диссимиляции; Защищает клетку и организм от резких колебаний температуры и механических повреждений

Запасают необходимое клетке вещество и энергию

Являются источником метаболической воды

Функции белков в клетке:

Строительная (синтез собственных специфических белков); Каталитическая (ускоряют химические реакции); Регуляторная (осуществляется с помощью гормонов); Двигательная (мышечные белки, с помощью которых осуществляется работа мышц); Транспортная (перенос кислорода и углекислого газа с помощью белка – глобина);

Защитная (выработка белков – антител).

Источник: http://ebiology.ru/ximicheskij-sostav-kletki-rol-organicheskix-veshhestv-v-ee-stroenii-i-zhiznedeyatelnosti/

Химический состав клетки – неорганические вещества. Урок биологии

Скачать методическую разработку «Химический состав клетки – неорганические вещества» к уроку биологии в формате doc

Целевая аудитория предложенной Школьным порталом методической разработки — 9 класс. Урок биологии на тему «Химический состав клетки – неорганические вещества» сопровождается наглядной презентацией и проводится, как урок изучения новых знаний при первичном их закреплении.

На данном уроке изучается химический состав клетки, а также выявляется роль неорганических соединений. Учащимся показывается многообразие соединений и химических элементов, что входят в состав клетки. Кроме того, выясняют какое значение, играют неорганические соединения в процессах жизнедеятельности клетки.

Материал занятия позволяет продолжить учителю формирование научно-материалистического восприятия окружающего нас мира, а также ответственного отношения в решении полученных заданий.

Химический состав клетки – описание хода урока

Сообщение темы урока “Химический состав клетки – неорганические соединения” сопровождается постановкой перед классом целей, которые предстоит реализовать в ходе данного занятия учащимся 9-го класса. Прежде всего, это изучение химического состава клетки и выявление роли неорганических соединений, как в отдельно взятой клетке, так и в живом организме в целом.

В ходе демонстрации слайдов презентации ребята мотивируются на учебную деятельность. Им сообщается, что в состав живой клетки включены, по большому счёту, все почти элементы из таблицы Менделеева Д.И. А роль каждого из этих элементов на сегодняшний день выяснена ещё не до конца.

Переход к изучению нового материала осуществляется с задания проблемного вопроса: — О чём может говорить наличие в составе клетки более восьмидесяти разных химических элементов, встречающихся также в окружающих нас объектах неживой природы. Вместе с учениками необходимо придти к выводу, что данное обстоятельство доказывает и подчёркивает общность неживой и живой природы.

Две группы веществ в составе клетки

При помощи схемы на следующем слайде обращаем внимание школьников на деление всего многообразия химических соединений, что содержатся в живых организмах, на две большие группы: неорганические и органические вещества.

В свою очередь, органические соединения объединяют в одну группу следующие классы веществ: белки, жиры, углеводы, нуклеиновые и органические кислоты.

А неорганические соединения делятся на следующие: вода, минеральные соли, газы, макроэлементы и микроэлементы.

Комментируя структурные звенья схемы, отмечается и то, что наибольшее количество вещества в клетке приходится на воду — 75-85%.

Необходимо здесь подчеркнуть особую роль воды в клетке и перечислить важнейшие из функций, что она выполняет в клетке:
• является внутренней средой клетки;
• определяет упругость и объем;
• выступает в качестве регулятора кислотности и тепла в клетке;
• является средой, где протекают биохимические реакции клетки;
• представляет собой универсальный растворитель.

Рационально вспомнить с учащимися строение молекулы воды, о котором им известно из курса химии 8 класса. Что касается солей, то они присутствуют в клетке исключительно в форме ионных соединений, а значит, представлены продиссоциированными под действием полярных молекул воды катионами некоторых металлов и анионами соответствующих кислотных остатков.

Роль ионов, входящих в химический состав клетки

Наиболее важными для протекающих в клетке процессов жизнедеятельности являются следующие ионы:
• катионы: K+, Na+, Ca2+, Mg2+;
• анионы: H2PO4–, Cl–, HCO3–.
Снова озадачим ребят вопросом: — На что влияют перечисленные катионы и анионы, находящиеся в клетке?

Используя материал учебника, обнаруживаем, что катионы отвечают за обеспечение одного из важнейших свойств любого живого организма — это раздражимость. Кроме того, катионы способствуют и сцеплению различных клеток между собой. Указанная же группа анионов позволяет обеспечить необходимую буферность, то есть поддерживать содержимое клетки на постоянном уровне слабощелочной среды.

На следующем этапе урока необходимо проанализировать содержание важнейших химических элементов в продуктах питания, поскольку именно с ними в клетки и поступает большое количество минеральных элементов. Учащиеся заполняют таблицу, которая затем сравнивается с таблицей на экране.

Так, кальций в оптимальных количествах содержится в молочных и рыбных продуктах питания. Хлор поступает в организм с молоком, мясом, яйцами и поваренной солью. Железо получают клетки из злаков, мяса и орехов. Для фтора — это рыба и чай, а для калия — фрукты, злаки и молоко.

Заключительный этап урока о химическом составе клетки

Теперь можно сделать выводы и подвести итога урока биологии. Еще раз вспомнить о двух классах веществ, входящих в состав клетки. О том, что больше всего в клетке воды. А также о важнейших функциях, которые выполняют минеральные вещества в клетках всех живых организмов.

Подробную методическую разработку и презентацию «Химический состав клетки – неорганические вещества» можете скачать перед статьей, а ниже в плеере просмотреть слайды ↓

Источник: http://nashashcola.ru/ximicheskij-sostav-kletki.html

Химический состав клетки

Сходство элементарного химического состава клеток всех организмов доказывает единство живой природы.

Вместе с тем нет ни одного химического элемента, содержащегося в живых организмах, который не был бы найден в телах неживой природы. В этом находит свое выражение общность живой и неживой природы.

Ниже дан перечень основных химических элементов, входящих в состав клетки (в % на сырую массу):

Кислород — 65 — 75 Углерод — 15 — 28 Водород — 8 — 10

Азот       — 1,5 — 3,0

Магний — 0,02 — 0,03 Натрий — 0,02 — 0,03 Кальций — 0,04 — 2,00 Железо — 0,01 — 0,015 Калий — 0,15 — 0,40 Сера — 0,15 — 0,20 Фосфор — 0,20 — 1,00

Хлор — 0,05 — 0,10

Цинк — 0,0003 Медь — 0,0002 Йод    — 0,0001

Фтор — 0,0001

Этот перечень, естественно, распадается на 3 группы. Кислород, углерод, водород и азот — группа элементов, которыми живые существа богаче всего. В клетке они составляют до 98% ее сырой массы.

Читайте также:  Общая характеристика одноклеточных животных, или простейших - биология

Вторая группа объединяет следующие 8 элементов, которые представлены десятыми и сотыми долями процента в веществе живой клетки; их общая сумма — около 1,9% общей массы клетки.

В третью группу входят такие микроэлементы, которых в живой клетке очень мало, но они совершенно необходимы для ее нормального функционирования.

Несмотря на единство элементарного состава живой и неживой природы, клетки живых существ построены из таких специфических химических соединений этих элементов, которые получили специальное название — органические вещества. В настоящее время органические вещества в природе могут образовываться на нашей планете только в теле живых организмов. Это, конечно, не исключает возможности их искусственного синтеза, осуществляемого в лабораториях.

В состав клеток входят и неорганические соединения. Но за исключением воды они составляют незначительную долю по сравнению с содержанием органических веществ.

Процентное соотношение в клетке воды, различных органических и неорганических веществ следующее (в расчете на сырую массу):

Вода  — 70—85
Белки  — 10—20 Жиры  —  1—5 АТФ и другие низкомолекулярные  органические   вещества — 0,1—0,5 Углеводы — 0,2—2,0

Неорганические вещества (кроме воды)  —  1—1,5

Значение воды в теле живой клетки огромно. Вода составляет основу тех коллоидных систем, из которых состоит клетка. Она является растворителем, а все обменные процессы в клетке могут протекать лишь в растворах.

Вода играет важную роль во многих реакциях, происходящих в организме. К их числу относятся, например, реакции гидролиза, при которых высокомолекулярные органические вещества (белки, жиры, углеводы) расщепляются за счет присоединения к ним воды.

Наконец, вода служит основой для жидкостей, передвижение которых в теле многоклеточных организмов обеспечивает перенос необходимых веществ от одной части организма к другой.

Поэтому чем выше биохимическая активность той или иной клетки или ткани, тем выше содержание в ней воды. Велика роль воды и в теплорегуляции клетки и организма в целом.

Неорганические вещества (кроме воды) находятся в организмах в виде анионов и катионов в растворах и в виде соединений с органическими веществами.

Важное функциональное значение для нормальной жизнедеятельности клетки имеют катионы К+, Nа+, Са2+ и Mg2+ и анионы НРО24, Н2РО4— ,НСО3-, Сl-В соединении с органическими веществами особое значение имеют сера, входящая в состав многих белков; фосфор как обязательный компонент веществ хромосом; железо, входящее в состав белка крови гемоглобина, и магний, находящийся в молекуле хлорофилла. Кроме того, фосфор в форме нерастворимого фосфорнокислого кальция составляет твердую основу костного скелета позвоночных и раковин моллюсков.

Ведущими органическими веществами, входящими в состав клетки, являются белки, углеводы, жиры, нуклеиновые кислоты (ДНК и РНК) и аденозинтрифосфорная кислота (АТФ).
Белки — основная составная часть любой живой клетки.

На их долю приходится половина сухого вещества клетки (после удаления из нее волы). Белки выполняют в ней чрезвычайно разнообразные функции, из которых самая важная — каталитическая функция. Любая химическая реакция в клетке протекает при участии особых биологических катализаторов — ферментов.

А любой фермент — белок. Следовательно, без белков-ферментов клетка не смогла бы осуществить ни одной химической реакции, а значит не смогла бы ни расти, ни размножаться, ни функционировать. Где нет белка, там нет жизни. Именно это и заставило Ф.

Энгельса определить жизнь как форму cуществования белковых тел — такую форму, которая реализуется через постоянный обмен веществ.

Помимо каталитической, очень важна структурная функции белков. Белки входят в состав всех мембран, окружающих и пронизывающих клетку. В соединении с ДНК белок составляет тело хромосом, а в соединении с РНК — тело рибосом.

Растворы низкомолекулярных белков входят в состав жидких фракций клетки.

Наконец, именно с белками связано осуществление таких функций, как перенос кислорода в теле организма (его осуществляет белок крови — гемоглобин), сокращение мускулатуры, передача раздражения по нервам и целый ряд других.

Химический состав белков чрезвычайно разнообразен, и в то же время все они построены по одному принципу — по принципу полимера: молекула одного белка состоит из многих не вполне одинаковых мономеров — молекул аминокислот. Всего известно 20 различных аминокислот, входящих в состав белков.

Каждая из них имеет карбоксильную группу (СООН), аминную группу (NH2) и третью химическую составную часть (радикал — R), которой одна аминокислота отличается от другой.

В молекуле, белка аминокислоты химически соединены пептидной связью: карбоксильная группа одной кислоты соединяется с аминной группой другой; при каждом таком соединении выделяется молекула воды:

В молекуле того или иного белка одни аминокислоты могут многократно повторяться, а другие совсем отсутствуют. Общее число аминокислот, составляющих одну молекулу белка, иногда достигает нескольких сот тысяч. В результате молекула белка представляет собой макромолекулу, т. е. молекулу с очень большой молекулярной массой: от нескольких десятков тысяч до многих сотен тысяч.

Химические и физиологические свойства белков определяются не только тем, какие аминокислоты входят в их состав, но и тем, какое место в длинной цепочке белковой молекулы занимает каждая из аминокислот. Так достигается огромное разнообразие первичной структуры белковой молекулы.

В живой клетке белки имеют еще и вторичную и третичную структуру, с чем также связаны их специфические функциональные свойства. Вторичная структура белковой молекулы достигается ее спирализацией: длинная цепочка соединенных между собой аминокислот закручивается, а витки спирали плотно прилегают друг к другу.

Третичная структура определяется тем, что слирализованная молекула белка еще многократно и закономерно сворачивается, образуя компактную глобулу (шарик). Именно такое состояние белковой молекулы соответствует активному состоянию белка-фермента.

Если же под действием различных факторов (нагревание, обработка химическими веществами) происходит разворачивание белковой молекулы и потеря вторичной и третичной структуры белка, то он при этом теряет и свои ферментативные свойства..

Такое изменение может оказаться обратимым (белок восстановит свою вторичную и третичную структуру), если воздействие не было слишком сильным. Необратимые изменения структуры белков в клетке ведут к ее гибели.

Углеводы — столь же необходимая составная часть любой клетки, как и белок. В растительных клетках их значительно больше, чем в животных.

Углеводы — своеобразное «топливо» для живой клетки: окисляясь, они высвобождают химическую энергию, которая расходуется клеткой на все процессы жизнедеятельности.

У растений углеводы выполняют и важные строительные функции: из них образуются оболочки как живых клеток, так и мертвых (древесина).

По химическому составу углеводы делятся на две большие группы: простые и сложные углеводы. В наиболее широкоизвестных простых углеводах содержится 5 (пентозы) или 6 (гексозы) атомов углерода и столько же молекул воды. Примерами простых углеводов могут служить глюкоза и фруктоза, находящиеся во многих плодах растений.

Сложные углеводы — это соединение нескольких молекул простых углеводов в одну. Пищевой сахар (сахароза), например, состоит из одной молекулы глюкозы и одной молекулы фруктозы.

Значительно большее количество молекул простых углеводов входит в такие сложные углеводы, как крахмал, клетчатка (целлюлоза), гликоген.

В молекуле клетчатки, например, до 100—150 молекул глюкозы.

Жиры и липоиды — также обязательная составная часть любой клетки. Как и углеводы, жиры используются клеткой как источник энергии: при расщеплении жиров освобождается энергия.

Подкожный жир играет важную теплоизоляционную роль у многих животных (водные млекопитающие). У животных, впадающих зимой в спячку, жиры обеспечивают организм необходимой энергией, так как питательные вещества извне в это время не поступают.

Жиры составляют запас питательных веществ и в семенах многих растений.

По химическому составу жиры представляют собой соединение глицерина с различными жирными кислотами.

Именно этим высокомолекулярным кислотам жиры и липоиды обязаны своим важным биологическим свойством: они не растворяются в воде.

Поэтому жироподобные вещества — липоиды входят в состав всех мембран клетки и ее структурных элементов. Средний, липондный, слой таких мембран препятствует свободному перемещению воды из клетки в клетку.

Нуклеиновые кислоты впервые были обнаружены в ядрах клеток. Существует два типа нуклеиновых кислот: дезоксирибонуклеиновые (сокращенно ДНК) и рибонуклеиновые (сокращенно РНК).

ДНК содержится преимущественно в ядре клетки, РНК — в цитоплазме и в ядре. Значение нуклеиновых кислот состоит в том, что они обеспечивают синтез в клетке специфических для нее белков.

Благодаря функции ДНК, связанной с синтезом белков-ферментов, осуществляется и ее генетическая роль: ДНК является носителем наследственной информации.

Рис. 5. Схема строения нуклеотида

Молекулярная структура ДНК отражает ее особое химическое свойство — способность к саморепродукции (репликации) и ее основную функцию — обеспечение синтеза специфических белков. Это очень длинная двойная цепочка. Длина ее во многие сотни раз превышает длину цепочки белковой молекулы.

Как и молекуле белка, молекуле ДНК присуща спиральная структура: двойная цепочка спирально закручена вокруг своей продольной оси. Каждая одинарная цепочка представляет собой полимер и состоит из отдельных, соединенных между собой мономеров — нуклеотидов.

В состав любого нуклеотида входят два постоянных химических компонента (фосфорная кислота и углевод дезоксирибоза) и один переменный, который может быть представлен одним из четырех азотистых оснований: аденином, гуанином, тимином или цитозином (рис. 5).

Поэтому в молекулах ДНК всего 4 разных нуклеотида. Разнообразие же молекул ДИК огромно и достигается благодаря различной последовательности нуклеотидов в цепочке ДНК.

Таким образом, и ДНК и белки построены по одному и тому же химическому принципу: специфичность ДНК обусловливается порядком нуклеотидов в ее молекуле, специфичность белка — порядком аминокислот в его молекуле. Как будет видно из дальнейшего, это совпадение имеет первостепенное значение при синтезе белков.

Рис. 6. Схема строения молекулы дезоксирибонуклеиновой кислоты (ДНК): две цепочки нуклеотидов, закрученные спирально, соединены азотистыми основаниями: а — аденин, Т— тимин, Г — гуанин, Ц — цитозин

Две одинарные цепи ДНК соединены в одну двойную через нуклеотиды.

При этом возможны лишь такие химические соединения: аденина с тимином и гуанина с цитозином. Поэтому последовательность нуклеотидов в одной цепочке жестко определяет и последовательность их в другой цепочке.

Строгое соответствие нуклеотидов друг другу в парных цепочках молекулы ДНК получило название комплементарности (рис. 6). Эта особенность химического строения молекулы ДНК создается в процессе синтеза ДНК в живой клетке, который называется репликацией. Схематически этот процесс изображен на рис. 7.

Сводится он к тому, что исходная двойная цепочка молекулы ДНК под действием специального фермента постепенно распадается на две одинарные — и тут же к каждой из них по принципу химического сродства (аденин к тимину, гуанин к цитозину)   присоединяются свободные нуклеотиды. Тем самым вновь восстанавливается двойная структура ДНК.

Но теперь уже таких двойных молекул получается две вместо одной. Поэтому синтез ДНК и получил название саморепродукции, или   репликации: каждая молекула ДНК как бы сама себя удваивает.

Молекулярная структура РНК близка к таковой ДНК. Но есть и существенные различия. Молекула РНК представляет собой не двойную, а одинарную цепочку из нуклеотидов. Поэтому РНК не способна к саморепродукции.

В состав молекул РНК также входят 4 нуклеотида, но один из них иной, чем в ДНК: вместо тимина в РНК содержится другое азотистое соединение — урацил. Кроме того, в состав всех нуклеотидов молекулы РНК входит не дезоксирибоза, а рибоза.

Молекулы РНК не столь велики, как молекулы ДНК. О двух формах РНК будет сказано дальше.

Аденозинтрифосфорная кислота (АТФ). Это органическое вещество входит в состав любой клетки, где выполняет одну из важнейших функций.

Химически АТФ представляет собой нуклеотид, в состав которого входят азотистое основание аденин, углевод рибоза и фосфорная кислота. Но в отличие от нуклеотида, входящего в состав РНК, в молекуле АТФ содержатся три молекулы фосфорной кислоты.

Это обстоятельство и определяет биохимические особенности и функцию АТФ.

Неустойчивые химические связи, которыми соединены  молекулы  фосфорной кислоты в АТФ, очень богаты энергией: при разрыве этих связей энергия высвобождается и используется в живой клетке на процессы жизнедеятельности и синтез. Такой разрыв осуществляется через реакцию присоединения воды молекулой АТФ и отщеплением от нее одной молекулы фосфорной кислоты.

Рис. 7. Схема репликация (самоудвоения) молекулы ДНК.

А — исходная молекула ДНК перед репликацией; Б — репликация молекулы ДНК: цепи расходятся и к каждой из них подстраивается новая цепь из свободных нуклеотидов по принципу комплементарпости; В — две молекулы ДНК.

образовавшиеся в результате репликации

В результате молекула АТФ превращается в АДФ (аденозин-дифосфорная кислота):
АТФ + Н2О → АДФ + Н3РO4 +  свободная энергия.

Обратный процесс превращения АДФ в АТФ происходит путем присоединения молекулы фосфорной кислоты к АДФ с выделением воды и поглощением большого количества энергии. Таким образом, система обеспечивает в живой клетке постоянный обмен энергии.

Источник: http://biologiya.net/obshhaya-biologiya/uchenie-o-kletke/xim-sostav-kletki.html

Ссылка на основную публикацию