Клеточный уровень организации жизни, биология

Схема

Клеточный уровень организации жизни, Биология

Теория

  • Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.
  • Молекулярно-генетический (молекулярный) уровень
  • Биологическая система

Биологические макромолекулы (нуклеиновые кислоты, белки, углеводы) и другие вещества (липиды, АТФ и т.п.)

Элементарные процессы

Распад и синтез макромолекул в клетке, самосборка и матричное копирование макромолекул, генные мутации и т.д.

Характеристика

На этом уровне элементарной структурной единицей является ген (участок ДНК), а ДНК – носитель наследственной информации у всех живых организмов. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ превращение энергии, передача наследственной информации.

  1. Субклеточный уровень
  2. Биологическая система
  3. Органоиды
  4. Элементарные процессы

Деление полуавтономных органоидов (митохондрии, пластиды), сборка органоидов и т.д.

Характеристика

На уровне субклеточных (надмолекулярных) структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также включений клетки.

  • Клеточный уровень
  • Биологическая система
  • Клетка
  • Элементарные процессы

Жизненный цикл клетки. Митоз. Мейоз. Амитоз. Метаболизм и т.д.

Характеристика

Клетка – основная струк­турно-функциональная единица всех жи­вых организмов, элементарная живая система, единица размножения и развития всех живых организмов, обитающих на Земле. Минимальная единица, которой присущи все свойства живого.

  1. Тканевый уровень
  2. Биологическая система
  3. Ткань
  4. Элементарные процессы

Регенерация ткани, дифференциация, специализация. и т.д.

  • Характеристика
  • Ткань – совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции. Этот уровень присутствует только у многоклеточных организмов
  • Органный уровень
  • Биологическая система
  • Орган
  • Элементарные процессы

Процессы, связанные с функциями органов: пищеварение, газообмен и т.д.

  1. Характеристика
  2. Орган – структурно-функциональное объединение нескольких типов тканей.
  3. Организменный уровень
  4. Биологическая система
  5. Особь
  6. Элементарные процессы

Процессы онтогенеза (индивидуальное развитие), включающие процессы эмбрионального и постэмбрионального развития, обмен веществ, размножение и т.д.

Характеристика

Организм – целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных на выполнении различных функций.

  • Популяционно-видовой уровень
  • Биологическая система
  • Популяция и вид
  • Элементарные процессы

Процессы, приводящие к видообразованию: дрейф генов, популяционные волны, дивергенция и т.д.

Характеристика

Популяция – это совокупность организмов одного и того же вида, достаточно долго проживающих на определенной территории и полностью или частично изолированные от других популяций. Вид – совокупность схожих особей, имеющих общее происхождение, свободно скрещивающихся между собой и дающие плодовитое потомство.

  1. Биоценотический (экосистемный, биогеоценотический) уровень
  2. Биологическая система
  3. Биоценоз
  4. Элементарные процессы

Круговорот веществ и энергии, межвидовые взаимодействия, передача энергии по цепям питания, сукцессии и т.д.

  • Характеристика
  • Экосистема – биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними
  • Биосферный уровень
  • Биологическая система
  • Биосфера
  • Элементарные процессы

Глобальный круговорот веществ и превращение энергии и т.д.

Характеристика

Биосфера – оболочка Земли, заселенная живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности совокупность всех биогеоценозов, включает все явления жизни на Земле. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Термины

Отработать термины по теме “Уровни организации живого”

Список использованных источников

ЕГЭ. Биология. Пошаговая подготовка / Ю.А. Садовниченко. — Москва : Эксмо, 2015. — 320 с

Биология (Общие закономерности). 10 кл. : учебное пособие к элективному курсу для общеобразоват. организаций (углублённый уровень) / А.А. Вахрушев, М.А. Корженевская, А.П. Пуговкин, Н.А. Пуговкина, П.М. Скворцов. – М . : Баласс, 2015. – 400 с.: ил. (Образовательная система «Школа 2100»).

Уровни организации живого

В настоящее время выделяют следующие уровни организации живой материи: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биоценотический, биосферный. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень.Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов и стероидов, находящихся в клетках и получивших название биологических молекул.

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой. На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Все макромолекулы универсальны, т.к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима.

Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из 4 известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК.

В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмолекулярные структуры, примерами которых являются нуклеопротеиды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков).

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул.

Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма.

Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции.

Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом.

Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул – в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу – механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т.к. являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень организации жизни, Биология

Клеточный уровень.Главнейшая специфическая черта этого уровня заключается в том, что с него начинается жизнь. Этот уровень представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие), а также клетками многоклеточных организмов.

Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям.

Некоторые различия касаются лишь строения их мембран и отдельных органелл.

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма.

На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам.

Например, у клеток эукаритов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены».

Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью.

Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы.

В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические).

Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрий осуществляется окислительное фосфорилирование.

Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток – важнейшее свойство живого.

Тканевый уровеньпредставлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью (пояснить на примере выхода растений на сушу).

У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа).

У растений различают: меристематическую, покровную, механическую, проводящую, основную и выделительную ткани.

Читайте также:  Ткани растений: проводящие - биология

Органный уровень.Представлен органами организмов. Орган – это обособленная совокупность тканей и отдельных клеток, выполняющих определенную функцию в пределах живого организма.

У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляется за счет различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей.

Для позвоночных характерна цефализация (филогенетич. процесс обособления головы у билатерально-симметричных животных и включение в её состав органов, расположенных у предков в др. частях тела), защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень.Этот уровень представлен самими организмами – одноклеточными и многоклеточными организмами растительной и животной природы.

Специфическая особенность организменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида.

Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

Популяционный уровень.Растения и животные не существуют изолированно, они объединены в популяции. Создавая надорганизменную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

Видовой уровень.Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен.

Вид может быть представлен от одной до многих тысяч популяций, которые приурочены к различным местообитаниям и занимают различные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью.

Ныне существующие виды не похожи на виды, существовавшие в прошлом (на примере женщин в прошлом и современности). Вид является единицей классификации живых существ.

Биоценотический уровень.Представлен биоценозами – сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого.

В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами.

На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Биосферный уровень (глобальный).Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем.

Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т.е. связан с появлением нового качества.

3. Иерархия живого в биосфере

Органический мир целостен, т.к. составляет систему взаимосвязанных частей, в тоже время он дискретен, т. к. состоит из дискретных единиц организмов или особей. Каждый организм одновременно и целостная, и дискретная система.

В биологии ХХ века сложились представления об уровнях организации как конкретном выражении упорядоченности, являющейся одной из основ живого.

На всех уровнях организации жизни проявляются все основные свойства живой материи, хотя на каждом из уровней характер их проявления имеет качественные особенности.

Все многообразие организмов разделяется на две группы – прокариоты и эукариоты.

К прокариотам относятся бактерии и сине-зеленые водоросли, не имеют оформленного ядра, генетический материал (ДНК) находится прямо в цитоплазме и не окружен ядерной мембраной, отсутствуют митохондрии, центриоли, пластиды.

Эукариоты (растения, грибы, слизевики и животные) имеют типичный ядерный аппарат. Среди них как одноклеточные, так и многоклеточные организмы.

Таблица 1. Основные различия между прокариотами и эукариотами

Характеристика Прокариоты Эукариоты
Размеры клеток Диаметр в среднем 0,5-5 мкм Диаметр обычно до 40 мкм, объем клетки, как правило, в 1 000-10 000 раз больше
Форма Одноклеточные или нитчатые Одноклеточные, нитчатые или истинно многоклеточные
Генетический материал Кольцевая ДНК находится в цитоплазме и ничем не защищена. Нет истинного ядра или хромосом, нет ядрышка Линейные молекулы ДНК связаны с белками и РНК и образуют хромосомы внутри ядра. Внутри ядра находится ядрышко.
Синтез белка Рибосомы мельче, эндоплазматического ретикулума нет Рибосомы крупнее, могут быть прикреплены к эндоплазматическому ретикулуму
Органеллы Мало, ни одна из них не имеет оболочки (двойной мембраны) Много, некоторые окружены двойной мембраной (ядро, митохондрии, хлоропласты), другие ограничены одинарной (вакуоли, а. Гольджи, лизосомы, ЭР и т.д.)
Клеточные стенки Жесткие, содержат полисахариды и аминокислоты. Основной уплотняющий компонент – муреин У растений и грибов жесткие и содержат полисахариды. Основной уплотняющий компонент у растений – целлюлоза, у грибов – хитин
Дыхание У бактерий происходит в мезосомах; у сине-зеленых водорослей – в цитоплазматических мембранах Аэробное дыхание происходит в митохондриях
Фотосинтез Хлоропластов нет, происходит в мембранах, не имеющих специфической упаковки В хлоропластах, содержащих специальные мембраны, которые уложены в ламеллы или граны
Фиксация азота Бактерии обладают этой способностью (некоторые) Не способны

В настоящее время на поверхности нашей планеты произрастает свыше 500 000 видов растений, из них около 200 000 видов цветковых.

Все множество живых организмов классифицируется по определенной системе иерархически соподчиненных групп – таксонов. Таксон– группа организмов, связанных той или иной степенью родства и достаточно обособленную, чтобы ей можно было присвоить таксономическую категорию того или иного ранга – вид, род, семейство, порядок, класс, отдел, царство и надцарство.

Большинство современных ученых признают 2 надцарства – прокариоты и эукариоты. Надцарство прокариот включает 2 царства – архебактерии и бактерии (в т.ч. сине-зеленые водоросли); надцарство эукариот – 3 царства – животные, грибы и растения.

Каждое растение относится к определенному виду, а вид – к роду. В настоящее время во всех странах мира общепризнанной является бинарная номенклатура, введенная К.Линнеем, т.е. двойное название растений (лютик едкий – Ranunculus acer).

Вершина эволюции животного мира – тип хордовых, растительного мира – тип покрытосеменных.

Большинство биологов считают, что свойства живого в полной мере проявляются в отдельном организме, что единицей жизни является клетка, и что специфика живого связана с особой упорядоченностью биологических структур – молекул ДНК. Но проблемы биологической организации значительно шире и их решение – это выявление общих принципов в организации живого, законов возникновения развития жизни.

Людвиг фон Берталанфи в 1927 году разработал “Организменную концепцию”, которая далее трансформировалась в “Общую теорию систем”.

Основа его концепции – иерархический порядок организации живой природы, в котором каждая система – комплекс взаимодействующих элементов – является компонентом системы более высокого уровня: атомы в молекуле, молекулы в клетке, клетки в организме, организмы в колониях и сообществах.

В развитии систем одни организаторы подчинены другим – рангом выше, те в свою очередь подчинены еще более высоким рангам. Следовательно, организацию данной системы нельзя объяснить суммированием свойств ее элементов, а надо исходить из ее соподчиненного положения в иерархии живой природы. Выделяют следующие градации: микромир, макромир, мегамир.

Микромир мы можем постичь, только используя микроскопическую технику. Человек живет на среднем уровне, наиболее богатом в информационном отношении – это макромир. Все, что выходит за пределы нашей биосферы – мегамиры.

Исходное научное знание фиксирует и формирует объект и предмет научного исследования, в которых накапливаются научные факты и возникают научные проблемы.

Решение проблемы начинается с выдвижения идей и формулирования гипотез. Подтвержденные гипотезы принимают статус законов и тем самым завершают формирование зрелой теории.

Метатеории – синтез мирового научного знания в общих и частных научных картинах мира.

Самая удобная и увлекательная подготовка к ЕГЭ

  • Роберт Гук в 1665 году обнаружил клетки в срезе пробки и впервые применил термин клетка.
  • Антони ван Левенгук открыл одноклеточные организмы.
  • Маттиас Шлейден в 1838 году и Томас Шванн в 1839 году сформулировали основные положения клеточной теории. Однако они ошибочно считали, что клетки возникают из первичного неклеточного вещества.
  • Рудольф Вирхов в 1858 году доказал, что все клетки образуются из других клеток путём клеточного деления.
  1. Клетка является структурной единицей всего живого. Все живые организмы состоят из клеток (исключение составляют вирусы).

  2. Клетка является функциональной единицей всего живого. Клетка проявляет весь комплекс жизненных функций.
  3. Клетка является единицей развития всего живого. Новые клетки образуются только в результате деления исходной (материнской) клетки.
  4. Клетка является генетической единицей всего живого.

    В хромосомах клетки содержится информация о развитии всего организма.

  5. Клетки всех организмов сходны по химическому составу, строению и функциям.

Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни.

Различают два типа клеточной организации: прокариотический и эукариотический. К прокариотам относятся бактерии и цианобактерии (сине-зелёные), к эукариотам — растения, грибы и животные.

Прокариотические клетки устроены сравнительно просто.

Они не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоид, единственная молекула ДНК кольцевая и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид — муреин, мембранные органоиды отсутствуют, их функции выполняют впячивания плазматической мембраны (мезосомы), рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру.

Эукариотические клетки имеют ядро, в котором находятся хромосомы — линейные молекулы ДНК, связанные с белками, в цитоплазме расположены различные мембранные органоиды. Растительные клетки отличаются наличием толстой целлюлозной клеточной стенки, пластид, крупной центральной вакуоли, смещающей ядро к периферии.

Клеточный центр высших растений не содержит центриоли. Запасным углеводом является крахмал. Клетки грибов имеют клеточную стенку, содержащую хитин, в цитоплазме имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Главным резервным углеводом является гликоген.

Животные клетки не имеют клеточной стенки, не содержат пластид и центральной вакуоли, для клеточного центра характерна центриоль. Запасным углеводом является гликоген. В зависимости от количества клеток, из которых состоят организмы, их делят на одноклеточные и многоклеточные.

Одноклеточные организмы состоят из одной-единственной клетки, выполняющей функции целостного организма. Одноклеточными являются все прокариоты, а также простейшие, некоторые зелёные водоросли и грибы. Тело многоклеточных организмов состоит из множества клеток, объединённых в ткани, органы и системы органов.

Клетки многоклеточного организма специализированы для выполнения определённой функции и могут существовать вне организма лишь в микросреде, близкой к физиологической (например, в условиях культуры тканей). Клетки в составе многоклеточного организма различаются по размерам, форме, структуре и выполняемым функциям.

Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.

Половые клетки гаплоидны (содержат одинарный набор хромосом — n). В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Функции ядра: хранение генетической информации, передача её дочерним клеткам в процессе деления, контроль жизнедеятельности клетки. В таблице представлена характеристика структур эукариотической клетки, в таблице даны основные различия строения клеток прокариот и эукариот, в таблице 3.5 — различия животной и растительной клеток.

Характеристика структур эукариотической клетки

Название Строение Функции
I. Поверхностный аппарат клетки Плазматическая мембрана, надмембранный комплекс, субмембранный комплекс Взаимодействие с внешней средой; обеспечение клеточных контактов; транспорт: а) пассивный (диффузия, осмос, облегченная диффузия через поры); б) активный; в) экзоцитоз и эндоцитоз (фагоцитоз, пиноцитоз)
1. Плазматическая мембрана Два слоя липидных молекул, в которые встроены молекулы белка (интегральные, полуинтегральные и периферические) Структурная
2. Надмембранный комплекс:
а) гликокаликс Гликолипиды и гликопротеины Рецепторная
б) клеточная стенка у растений и грибов Целлюлоза у растений, хитин у грибов Структурная; защитная; обеспечение тургора клетки
3. Субмембранный комплекс Микротрубочки и микрофиламенты Обеспечивает механическую устойчивость плазматической мембраны
II. Цитоплазма
1. Гиалоплазма Коллоидный раствор неорганических и органических веществ Протекание ферментативных реакций; синтез аминокислот, жирных кислот; формирование цитоскелета; обеспечение движения цитоплазмы (циклоза)
2. Одномембранные органеллы:
а) эндоплазматический ретикулум: Система мембран, образующих цистерны, канальцы Транспорт веществ внутри и вне клетки; разграничение ферментных систем; место образования одномембранных органелл: комплекса Гольджи, лизосом, вакуолей
гладкий Рибосом нет Синтез липидов и углеводов
шероховатый Рибосомы есть Синтез белков
б) аппарат Гольджи Плоские цистерны, крупные цистерны, микровакуоли Образование лизосом; секреторная; накопительная; укрупнение белковых молекул; синтез сложных углеводов
в) первичные лизосомы Пузырьки, ограниченные мембраной, содержащие ферменты Участие во внутриклеточном пищеварении; защитная
г) вторичные лизосомы:
пищеварительные вакуоли Первичная лизосома + фагосома Эндогенное питание
остаточные тельца Вторичная лизосома, содержащая непереваренный материал Накопление нерасщеплённых веществ
аутолизосомы Первичная лизосома + разрушенные органеллы клеток Аутолиз органелл
д) вакуоли В клетках растений мелкие пузырьки, отделённые от цитоплазмы мембраной; полость заполнена клеточным соком Поддержание тургора клетки; запасающая
е) пероксисомы Мелкие пузырьки, содержащие ферменты, нейтрализующие перекись водорода Участие в реакциях обмена; защитная
3. Двумембранные органеллы:
а) митохондрии Внешняя мембрана, внутренняя мембрана с кристами, матрикс, содержащий ДНК, РНК, ферменты, рибосомы Клеточное дыхание; синтез АТФ; синтез белков митохондрий
б) пластиды: Внешняя и внутренняя мембраны, строма
хлоропласты В строме мембранные структуры — ламеллы, образующие диски — тилакоиды, собранные в стопки — граны, содержащие пигмент хлорофилл. В строме — ДНК, РНК, рибосомы, ферменты Фотосинтез; определение окраски листьев, плодов
хромопласты Содержат жёлтые, красные, оранжевые пигменты Определение окраски листьев, плодов, цветов
лейкопласты Не содержат пигментов Накопление запасных питательных веществ
4. Немембранные органеллы:
а) рибосомы Имеют большую и малую субъединицы Синтез белка
б) микротрубочки Трубочки диаметром 24 нм, стенки образованы тубулином Участие в образовании цитоскелета, делении ядра
в) микрофиламенты Нити диаметром 6 нм из актина и миозина Участие в образовании цитоскелета; образование кортикального слоя под плазматической мембраной
г) клеточный центр Участок цитоплазмы и две центриоли, перпендикулярные друг другу, каждая образована девятью триплетами микротрубочек Участие в делении клетки
д) реснички и жгутики Выросты цитоплазмы; в основании находятся базальные тельца. На поперечном срезе ресничек и жгутиков по периметру расположено девять пар микротрубочек и одна пара в центре Участие в передвижении
5. Включения Капли жира, гранулы гликогена, гемоглобин эритроцитов Запасающая; секреторная; специфическая
III. Ядро Имеет двумембранную оболочку, кариоплазму, ядрышко, хроматин Регуляция активности клетки; хранение наследственной информации; передача наследственной информации
1. Ядерная оболочка Состоит из двух мембран. Имеет поры. Связана с эндоплазматическим ретикулумом Отделяет ядро от цитоплазмы; регулирует транспорт веществ в цитоплазму
2. Кариоплазма Раствор белков, нуклеотидов и других веществ Обеспечивает нормальное функционирование генетического материала
3. Ядрышки Мелкие тельца округлой формы, содержат рРНК Синтез рРНК
4. Хроматин Неспирализованная молекула ДНК, связанная с белками (мелкозернистые гранулы) Образуют хромосомы при делении клетки
5. Хромосомы Спирализованная молекула ДНК, связанная с белками. Плечи хромосомы соединены центромерой, может быть вторичная перетяжка, отделяющая спутник, плечи оканчивают стеломерами Передача наследственной информации
Признак Прокариоты Эукариоты
Организмы Бактерии и цианобактерии (сине-зелёные водоросли) Грибы, растения, животные
Ядро Имеется нуклеоид — часть цитоплазмы, где содержится ДНК, не окружённая мембраной Ядро имеет оболочку из двух мембран, содержит одно или несколько ядрышек
Генетический материал Кольцевая молекула ДНК, не связанная с белками Линейные молекулы ДНК, связанные с белками, организованы в хромосомы
Ядрышко (и) Нет Есть
Плазмиды (нехромосомные кольцевые молекулы ДНК) Есть В составе митохондрий и пластид
Организация генома До 1,5 тыс. генов. Большинство представлены в единственной копии От 5 до 200 тыс. генов. До 45% генов представлены несколькими копиями
Клеточная стенка Есть (у бактерий прочность придает муреин, у цианобактерий — целлюлоза, пектиновые вещества, муреин) Есть у растений (целлюлоза) и грибов (хитин), у животных нет
Мембранные органоиды: эндоплазматический ретикулум, аппарат Гольджи, вакуоли, лизосомы, митохондрии и др. Нет Есть
Мезосома (впячивание плазматической мембраны в цитоплазму) Есть Нет
Рибосомы Мельче, чем у эукариот Крупнее, чем у прокариот
Жгутики если есть, то не имеют микротрубочек и не окружены плазматической мембраной если есть, то имеют микротрубочки, окружены плазматической мембраной
Размеры диаметр в среднем 0,5–5 мкм диаметр обычно до 40 мкм
Признак Растительная клетка Животная клетка
Клеточная стенка Есть Нет
Пластиды Есть Нет
Вакуоли Есть крупные, занимают до 70–95% объёма клетки, оттесняя остальные органоиды к периферии клетки, поддерживают тургорное давление Есть небольшие пищеварительные и сократительные вакуоли, не аналогичные вакуолям растительных клеток
Гликокаликс Нет Есть
Микроворсинки Нет Есть
Клеточный центр Есть только у низших растений Есть
Гранулы гликогена Нет Есть
Гранулы крахмала Есть Нет

Клеточный уровень организации жизни

Многие микроскоп нам тайн открыл – невидимых частиц, жил в теле, других см.

Ломоносов

Клеточный уровень организации жизни

Клеточный уровень жизни – это уровень организации, свойства которого определяются клетками с их составными компонентами и их участием в процессах превращения веществ, энергии и информации.

КЛЕТОЧНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИННЯ
Основные составляющие, которые определяют пространственную ( структурную ) упорядоченность Основные процессы, которые определяют временную ( функциональную ) упорядоченность
  • 1. Поверхностный аппарат
  • 2. Цитоплазма
  • 3. Ядро (нуклеоид)
  1. 1. Процессы преобразования веществ
  2. 2. Процессы преобразования энергии
  3. 3. Процессы преобразования наследственной информации

Клетка биологической системой с характерными особенностями структуры, функций и свойств.

Структурная организация. Клетка является основной структурной единицей для колониальных и многоклеточных организмов, а у одноклеточных существ она является одновременно и самостоятельным целостным организмом.

Основными структурными частями клетки являются поверхностный аппарат, цитоплазма и ядро (нуклеоид в прокариотических организмов), построенные по определенным подсистем и элементов, которыми являются органеллы. Существуют два типа организации клеток – прокариотических и эукариотический.

Базовым уровнем организации для клеток является молекулярный уровень.

Функциональная организация.

Клеток, чтобы выжить, необходимо: а) получать энергию из окружающая ища и трансформировать в нужную ей форму; б) избирательно пропускать, перемещать и выводить вещества; в) хранить, реализовывать и передавать генетическую информацию следующему поколению; г) постоянно поддерживать химические реакции, необходимые для поддержания внутреннего равновесия; д) распознавать сигналы среды и определенным образом реагировать на них; е) образовывать новые молекулы и структуры взамен срок жизни которых истек.

Каждая живая клетка представляет собой систему, которая превращает вещества, энергию и информацию, которые поступают к ней, и таким образом обеспечивает процессы жизнедеятельности организма.

Клетка является функциональной единицей для осуществления таких функций, как опора, движение, питание, дыхание, кровообращение, выделения, размножения, движение, регуляция процессов и тому подобное.

Клетки одноклеточных организмов выполняют все эти жизненные функции, а большинство клеток многоклеточного организма специализированные на выполнении одной главной жизненной функции. Но в обоих случаях любая функция клетки является следствием согласованной работы всех ее компонентов.

Организация и функционирование всех компонентов клетки связаны прежде всего с биологическими мембранами. Внешние взаимосвязи между клетками поддерживаются путем выделения химических веществ и установления контактов, внутренние взаимосвязи между элементами клетки обеспечиваются гиалоплазмы.

Свойства . Клетка является элементарной биосистемой, поскольку именно на уровне клеток проявляются все свойства жизни.

Основными свойствами клетки являются открытость, обмен веществ, иерархичность, целостность, саморегуляция, самообновления, самовоспроизведения, ритмичность и др.

Определяются эти свойства структурно-функциональной организацией биомембран, цитоплазмы и ядра.

Уровни организации и изучения жизненных явлений

Для живой природы нашей планеты характерно сложное, иерархическое соотношение уровней организации.

Весь органический мир и окружающая среда образует биосферу, которая, в свою очередь состоит из биогеоценозов (экосистем) — территорий с характерными природными условиями и определёнными растительными и животными комплексами (биоценозами).

Биоценозы образованы популяциями — группами растительных и животных организмов одного вида, живущими на определённой территории и способнымы к произведению.

Популяции состоят из представителей конкретных видов (особей), способных свободно скрещиваться и давать плодовитое потомство. Многоклеточные организмы состоят из органов и тканей, образованных клетками. Одноклеточные организмы и клетки образованы внутриклеточными структурами, которые состоят из молекул.

Исходя из этого, выделяют несколько уровней организации живой материи.

Для каждого уровня организации живых организмов характерны свои закономерности, связанные со своими конкретными принципами организации, особенностями взаимоотношения с другими уровнями.

Общая биология изучает основные закономерности жизненных явлений, которые происходят на различных уровнях организации живого. Рассмотрение организации живой материи начинается из выяснения строения и свойств сложных органических молекул.

Клетки многоклеточных организмов входят в состав тканей, две или несколько тканей формируют орган. Многоклеточный организм имеет сложное строение, который состоит из тканей и органов, в то же время есть элементарной единицей биологического вида.

Взаимодействуя между собой виды составляют сообщество, или экологическую систему, которая, в свою очередь, является одним из компонентов биосферы.

Каждый уровень организации организмов изучают соответствующие отрасли биологии.

Молекулярный уровень

Замечание 1

Любая живая система, как бы сложно она не была организована,определяется на уровне функционирования биологических макромолекул — биополимеров: нуклеиновых кислот, белков, полисахаридов, а так же иных важных органических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и т. п.

Молекулярная биология, молекулярная генетика, физиология, цитохимия, биохимия, биофизика, определённые разделы вирусологии, микробиологии изучают физико-химические процессы, происходящие в живом организме (синтез, разложение и взаимные преобразования белков, нуклеиновых кислот, полисахариды, липидов и других веществ в клетке; обмен веществ, энергии и информации, которые регулируют эти процессы).

Такие исследования живых систем показали, что они состоят из низко- и высокомолекулярных органических соединений, которые в неживой природе практически невозможно обнаружить.

Для живых организмов наиболее характерны такие биополимеры, как белки, нуклеиновые кислоты, полисахариды, липиды (жироподобные соединения) и составляющие их молекул (аминокислоты, нуклеотиды, моносахариды, жирные кислоты).

Так же, на этом уровне изучается синтез, распад и взаимные преобразования этих соединений в клетках, обмен веществ, энергии и информации, регуляция данных процессов.

В результате подобных исследований было выяснено, что важнейшая особенность основных путей обмена — действие биологических катализаторов — ферментов (соединений белковой природы), которые строго избирательно влияют на скорость химических реакций.

Так же изучено строение некоторых аминокислот, ряда белков и многих простых органических соединений.

Установлено, что химическая энергия, которая освобождается в ходе биологического окисления (процессы дыхания, гликолиза), запасается в виде богатых на энергию соединений (в основном – аденозинфосфорные кислоты АТФ, АДФ и др.

), а потом используется в процессах, которые требуют поступления энергии (мышечные сокращения, синтез и транспорт веществ). Крупным успехом стало открытие генетического кода. Выяснено, что закодированная в ДНК наследственность через белки-ферменты контролирует как структурные белки, так и все основные свойства клеток и организма в целом.

Исследования на молекулярном уровне требуют выделения и изучения всех видов молекул, входящих в состав клетки, раскрытия их взаимосвязи между собой.

Используемые методы исследования на молекулярном уровне:

  • электрофорез (для разделения макромолекул с использованием их различия в зарядах);
  • ультрацентрифугирование (для разделения макромолекул с использованием их различия в плотности и размерах);
  • хроматография (для разделения макромолекул с использованием их различия в адсорбционных свойствах);
  • рентгеноструктурный анализ (изучают взаимное пространственное расположение атомов в сложных молекулах);
  • радиоизотопы (исследование путей превращения веществ, скорости их синтеза и распада);
  • искусственное моделирование систем из выделенных клеточных элементов (воспроизведение процессов, идущих в клетке — все биохимические процессы в клетке происходят не в однородной смеси веществ, а на определённых клеточных структурах).

Клеточный уровень

На клеточном уровне цитология, гистология, и их отделы (кариология, цито- и гистохимия, цитофизиология, цитогенетика), многие разделы физиологии, микробиологии и вирусологии изучают строение клетки и внутренних клеточных компонентов, а также связи и отношения между клетками в тканях и органах организма. Свободноживущих неклеточных форм жизни не существует.

Клетка — основная самостоятельная функциональная и структурная единица многоклеточного организма. Существуют одноклеточные организмы (водоросли, грибы, простейшие, бактерии). Также клетка есть единицей развития всех живых организмов, которые существуют на Земле. Свойства клетки определяются её компонентами, осуществляющими различные функции.

Определение 1

Совокупность клеток одного типа образует ткань. Сочетание нескольких тканей — орган, который выполняет определённую функцию в организме.

Благодаря исследованиям на клеточном уровне изучены основные компоненты клетки, строение клеток и тканей, их изменения в процессе развития.

Методы исследования на клеточном уровне:

  • микроскопия (световой микроскоп позволяет видеть объекты до 1 мкм);
  • цветные гистохимические реакции (выявление локализации в клетке различных химических веществ и ферментов);
  • авторадиография (выявление в клетке мест синтеза макромолекул);
  • электронная микроскопия (различение структур вплоть до макромолекул, хотя описание их строения часто затруднительно из-за недостаточной контрастности изображения);
  • центрифугирование (изучение функций внутриклеточных компонентов – их выделяют из разрушенных (гомогенизированных) клеток);
  • культура тканей (исследование свойств клеток);
  • микрохирургия (обмен ядрами между клетками, слияние (гибридизация) клеток.

Тканевый уровень

Ткань есть совокупностью сходных за строением клеток, объединённых исполнением общей функции. Сотни разнообразных клеток входят в составляют тело разнообразных многоклеточных организмов.

Разнообразные клетки животных образуют $4$ типа тканей: нервную, соединительную, эпителиальную и мышечную. У растений различают образующие и постоянные ткани.

К постоянным тканям относятся покровные, проводящие, механические и основная ткань.

Органный уровень

Определение 2

Органы — это высокодефференциированные части тела, которые размещены в определённом месте и исполняют специальные функции. Это структурно — функциональные объединения нескольких типов тканей. Они образуются в процессе развития из клеток различных тканей.

Группы разных органов коллективно функционируют для исполнения общей для организма функции. У человека есть такие системы органов: пищеварительная, дыхательная, сердечно — сосудистая, нервная, секреторная, выделительная, репродуктивная, Эндокринная, мышечная, скелетная и система покровных тканей.

Каждый отдельный орган системы исполняет конкретную функцию, но все вместе работают как одна «команда», обеспечивая максимальную эффективность всей системы. Все системы органов функционируют во взаимосвязи и регулируются нервной и эндокринной системами.

Нарушение функционирования любого органа приводит к патологии всей системы и даже организма.

Организменный уровень

Физиология (растений и животных, высшей нервной деятельности), экспериментальная морфология, эндокринология, эмбриология, иммунология, а также ещё рад других биологических отраслей изучают процессы и явления, происходящие в особи, и согласованное функционирование её органов и систем.

На этом уровне для создания общей теории онтогенеза проводятся исследования, направленные на раскрытие причинных механизмов становления биологической организации, её дифференцировки и интеграции, реализации генетической информации в онтогенезе. Также изучаются механизмы работы органов и их систем, их роль в жизнедеятельности организма, взаимные влияния органов, нервную и гуморальную регуляцию их функций, поведение животных, приспособительные изменения и др.

На этом уровне изучаются также механизм работы органов и систем, их роль в жизнедеятельности организма, взаимоотношения органов, поведение организмов, приспособительные изменения.

В данный момент применяются методы исследования:

  • электрофизиологические (состоят в отведении, усилении и регистрации биоэлектрических потенциалов);
  • биохимические (проводится изучение эндокринной регуляции — выделение и очистка гормонов, синтез их аналогов, изучение биосинтеза и механизмов действия гормонов);
  • кибернетические (исследование ВНД животных и человека методом моделирования);
  • экспериментальные ( выработка условных рефлексов, постановка задач).

Популяционно — видовой уровень

Определение 3

Определённые отрасли биологии (морфология, физиология, генетика, экология) изучают элементарную единицу эволюционного процесса — популяцию – совокупность особей одного вида, населяющих определённую территорию, более или менее изолированную от соседних групп.

Изучение состава и динамики популяции неразрывно связано с молекулярным, клеточным и организменным уровнями.

Методами исследования являются методы тех наук, которые изучают конкретно поставленные на этом уровне вопросы:

  • генетические методы — характер распределения наследственных особенностей в популяциях;
  • морфологические
  • физиологические
  • экологические.

Популяция и вид как целое могут служить объектами исследования самых разных биологических отраслей.

Биогеоценотический, или биосферный, уровень

Определение 4

Биогеоценология, экология, биогеохимия и другие отрасли биологии изучают процессы, происходящие в биогеоценозах (экосистемах) — элементарных структурных и функциональных единицах биосферы.

На этом уровне ведутся комплексные исследования, охватывающие взаимоотношения биотических и абиотических компонентов, которые входят в состав биогеоценоза; изучается движение живого вещества в биосфере, пути и закономерности протекания энергетических кругооборотов. Такой подход даёт возможность предвидеть последствия хозяйственной деятельности человека и в форме международной программы «Человек и биосфера» координировать усилия биологов многих стран.

Важное практическое значение имеет изучение биологической продуктивности биогеоценозов (утилизации энергии солнечной радиации путём фотосинтеза и использования гетеротрофными организмами энергии, запасённой автотрофами).

Замечание 2

Необходимость детального изучения биосферного уровня организации живого обусловливается тем, что биогеоценозы — среда, в которой протекают любые жизненные процессы на нашей планете.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]