Ткани растений: проводящие – биология

Ткани растений

Ткани растений: проводящие - биология

Как было сказано раньше, в процессе эволюции с выходом высших растений на сушу у них возникли ткани, которые достигли своей наибольшей специализации у цветковых растений. В этой статье мы рассмотрим подробнее, что представляют собой ткани растений, какие виды их существуют, какие функции они выполняют, а также особенности строения тканей растений.

Тканью называют группы клеток, сходных по своему строению и выполняющих одинаковые функции.

Основные ткани растений представлены на рисунке ниже:

Основные ткани растений

Виды, функции и строение тканей растений

Образовательная ткань растений

Название ткани Строение Местонахождение Функции
1. Верхушечная меристема Молодые тонкостенные клетки с крупным ядром и густой цитоплазмой. Их деление происходит путем митоза . Кончики корней, почки побегов (конусы нарастания) Рост органов в длину благодаря делению клеток; образование тканей корня, стебля, листьев, цветков
2. Боковая (камбий) Между древесиной и лубом стеблей и корней Рост корня и стебля в толщину; камбий внутрь откладывает клетки древесины, а наружу — клетки луба.
 3. Вставочная меристема  Между постоянными тканями  Периодическое отрастание поврежденных листьев и стеблей

Образовательная ткань растений

Вставочная меристема

Покровная ткань растений

Название ткани Строение Местонахождение Функции
1. Первичная Кожица (эпидерма) Плотно сомкнутые живые клетки с устьицами и утолщенной наружной стенкой  Покрывает листья, зеленые стебли, все части цветка Защита органов от колебаний температуры, повреждений и высыхания
2. Вторичная — пробка Мертвые клетки, их стенки пропитаны жироподобным веществом суберином Покрывает зимующие клубни, корневища, корни, стебли
3. Корка (покровный комплекс) Много слоев пробки, а также другие мертвые ткани Покрывает нижнюю часть стволов деревьев

Клетка эпидермы

Строение эпидермы

Покровная ткань растений — корка

Проводящая ткань растений

Название ткани Строение Местонахождение Функции
1. Сосуды древесины – ксилема Полые трубки с одревесневающими стенками и отмершим содержимым Древесина (ксилема), проходящая вдоль корня, стебля, жилок листьев Проведение воды и минеральных веществ из почвы в корень, стебель, листья, цветки
2.Ситовидные трубки луба — флоэмаСопровождающие клетки  или клетки-спутницы Вертикальный ряд живых клеток с ситовидными поперечными перегородкамиСестринские клетки ситовидных элементов, сохранившие  свою структуру Луб (флоэма), расположенный вдоль корня, стебля, жилок листьевВсегда располагаются вдоль ситовидных элементов (сопровождают их) Проведение органических веществ из листьев в стебель, корень, цветкиПринимают активное участие в проведении органических веществ по ситовидным трубкам флоэмы
3. Проводящие сосудисто-волокнистые пучки Комплекс из древесины и луба в виде отдельных тяжей у трав и сплошного массива у деревьев Центральный цилиндр корня и стебля; жилки листьев и цветков  Проведение по древесине воды и минеральных веществ; по лубу — органических веществ; укрепление органов, связь их в единое целое

 

Проводящая ткань

Проводящая ткань

Сопровождающая клетка

 

Механическая ткань растений

Название ткани Строение Местонахождение Функции
1. Колленхима Живые клетки с неравномерно утолщенными стенками В первичной коре молодых стеблей Укрепление молодых растущих органов
2. Волокна Длинные клетки с толстыми одревесневающими стенками и отмершим содержимым Вокруг проводящих сосудисто-волокнистых пучков Укрепление органов растения благодаря образованию каркаса
3. Склереиды Толстостенные клетки, нередко одревесневшие Твердые оболочки плодов, в мякоти незрелых плодов

Механические ткани растений

Механические ткани растений

Основная ткань растений

Название ткани Строение Местонахождение Функции
1. Ассимиляционная Столбчатая и губчатая ткань с большим количеством хлоропластов Мякоть листа, зеленые стебли Фотосинтез, газообмен
2. Запасающая Однородные тонкостенные клетки, заполненные зернами крахмала, белка, каплями масла, вакуолями с клеточным соком Корнеплоды, клубни, луковицы, плоды, семена Отложение в запас белков, жиров, углеводов (крахмал, сахар, глюкоза, фруктоза)

Основные ткани растений

Основные ткани растений

На рисунке ниже представлен сосудисто-волоконный проводящий открытый пучок.

Сосудисто-волоконный проводящий открытый пучок

  1. Флоэма
  2. Ксилема
  3. Камбий
  4. Склеренхимные волокна

Информация о статье:

Ткани растений

Виды, функции и строение тканей растений.

Written by: Stepan Gurov

Date Published: 11/29/2016

В статье описываются основные ткани растений. Их функции, строение. В качестве примеров приведены рисунки.

10 / 10 stars

Перейти к оглавлению.

Источник: http://www.studentguru.ru/tissue.html

Проводящие ткани

РАСТЕНИЯ

ВЫСШИЕ РАСТЕНИЯ

ТКАНИ РАСТЕНИЙ

Проводящие ткани

В отличие от предыдущих этот тип тканей относится к сложным, т. е. состоит из по-разному дифференцированных клеток.

Кроме собственно проводящих элементов, здесь присутствуют механические, выделительные и запасающие (рис. 165). Эти ткани объединяют все органы растения в единую систему.

Выделяют два типа проводящих тканей – ксилему и флоэму. Они имеют как структурные, так и функциональные различия.

Проводящие элементы ксилемы образованы мертвыми клетками. По ним осуществляется дальний транспорт воды и растворенных в ней веществ от корня к листьям. Проводящие элементы флоэмы сохраняют живой протопласт. По ним осуществляется дальний транспорт от фотосинтезирующих листьев к корню.

Обычно ксилема и флоэма располагаются в теле растения в определенном порядке, образуя слои или проводящие пучки. В зависимости от строения различают несколько типов проводящих пучков, которые характерны для определенных групп растений (рис. 166).

В коллатеральном открытом пучке между ксилемой и флоэмой находится камбий, обеспечивающий вторичный рост (рис. 166-А). В биколлатеральном открытом пучке флоэма располагается относительно ксилемы с двух сторон (рис. 166-В). Закрытым пучки не содержат камбия, поэтому неспособны к вторичному утолщению (рис. 166-Б, 166-Г).

Кроме того, встречаются два типа концентрических пучков, где или флоэма окружает ксилему (рис. 166-Д), или ксилема – флоэму (рис. 166-Е).

Ксилема (древесина). Развитие ксилемы у высших растений связано с обеспечением водного обмена. Поскольку через эпидерму постоянно выводится вода, пропорциональное количество влаги должно поглощаться растением и доставляться к органам, осуществляющим транспирацию.

Несложно представить, что наличие живого протопласта в проводящих воду клетках сильно замедлило бы транспорт. По этой причине мертвые клетки здесь оказываются гораздо функциональнее. Однако мертвая клетка не обладает тургесцентностью, и поэтому механическими свойствами должна обладать оболочка.

Читайте также:  Состав воздуха - биология

Действительно, проводящие элементы ксилемы состоят из вытянутых вдоль оси органа мертвых клеток с толстыми одревесневшими оболочками.

Первоначально ксилема образуется из первичной меристемы – прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Существует три типа формирования ксилемы.

При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идет в противоположном направлении (т. е. от центра к периферии), имеет место эндархный тип.

В случае мезархного типа ксилема появляется в центре прокамбиального пучка, а затем откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, а для стебля – эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

У некоторых растений (например однодольных) все клетки прокамбия дифференцируются в проводящие ткани. Они неспособны к вторичному утолщению. У других (древесные формы) между ксилемой и флоэмой остаются меристемы, которые называются латеральными, или камбием.

Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом.

У многих растений, произрастающих в сравнительно стабильных климатических условиях, он идет постоянно, а у форм, приспособленных к сезонным изменениям климата, – периодически (в результате образуются хорошо выраженные годовые кольца прироста).

Для правильного понимания строения и функционирования клеток, проводящих воду, может оказаться весьма полезным рассмотрение основных этапов дифференциации клеток прокамбия. Первоначально развивается протоксилема. Ее клетки имеют тонкие оболочки, что не препятствует их растяжению в соответствии с ростом органа.

Затем протопласт начинает откладывать вторичную оболочку. Однако этот процесс имеет особенности. Вторичная оболочка откладывается не сплошным слоем (это не позволило бы клетке растягиваться), а в виде колец или по спирали. Удлинение клетки при этом не нарушается.

У молодых клеток кольца или витки спирали расположены близко друг к другу, а у более зрелых расходятся в результате растяжения клетки (рис. 167). Несмотря на то что кольчатые и спиральные утолщения оболочки не препятствуют росту, механически они уступают оболочкам, где вторичное утолщение образует сплошной слой.

Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой. Это и есть метаксилема. Вторичное утолщение здесь не кольчатое или спиральное, как в протоксилеме, а точечное, лестничное или сетчатое. Ее клетки неспособны растягиваться и быстро (иногда в течение нескольких часов) отмирают.

Интересно, что этот процесс у расположенных поблизости клеток протекает очень согласованно. В цитоплазме появляется большое количество лизосом. Они распадаются, и находящиеся в них ферменты разрушают протопласт.

Если при этом разрушаются поперечные стенки, то расположенные друг над другом цепочкой клетки образуют полый сосуд (рис. 168). Сосудами обладают большинство покрытосеменных растений и некоторые папоротникообразные.

Если проводящая клетка не образует сквозных перфораций в своей стенке, ее называют трахеидой. Передвижение воды по трахеидам идет с меньшей скоростью, чем по сосудам, потому что у них нигде не прерывается первичная оболочка.

Между собой трахеиды сообщаются посредством пор. Сразу следует уточнить, что сам термин «пора» подразумевает сквозное отверстие. У растений же пора представляет собой лишь углубление во вторичной оболочке до первичной.

Никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймленные поры, у которых обращенный в полость клетки канал образует некоторое расширение – камеру поры. Поры большинства хвойных на первичной оболочке имеют утолщение – торус.

Напоминаем, что он представляет собой своеобразный клапан и способен регулировать интенсивность водного транспорта. Смещаясь, торус перекрывает ток воды через пору, но после этого он уже не способен вернуться в прежнее положение, т.е.

совершает одноразовое действие.

Поры бывают более или менее округлыми, а также вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую поровость называют лестничной). Через поры осуществляется транспорт как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и у члеников сосудов (отдельных клеток, которые сообща образуют сосуд).

Трахеиды представляют собой первую (с точки зрения эволюционной теории) и основную структуру, осуществляющую проведение воды в теле высших растений. Предполагают, что сосуды возникли из трахеид путем лизиса поперечных стенок между ними. Большинство папоротникообразных и голосеменных не имеют сосудов. Передвижение воды у них происходит исключительно посредством трахеид.

Сосуды в процессе исторического развития возникали неоднократно, причем у разных групп растений, но наиболее важное функциональное значение они получили у покрытосеменных, у которых они имеются наряду с трахеидами. Возможно, обладание более совершенным механизмом транспорта помогло им выжить и достигнуть такого разнообразия форм.

Поскольку ксилема является сложной тканью, кроме водопроводящих элементов, в ней содержатся и другие. Часть из них выполняет чисто механические функции. Это волокна либриформа. Наличие дополнительных механических структур очень важно.

Несмотря на утолщения, стенки водопроводящих элементов все же слишком тонки и неспособны самостоятельно удерживать огромную массу многолетнего растения. Волокна развились из трахеид. Для них характерны меньшие размеры, мощные лигнифицированные (одревесневшие) оболочки и узкие полости.

Читайте также:  Пути преодоления современного экологического кризиса - биология

На стенке можно обнаружить поры, но они лишены окаймления. Волокна неспособны проводить воду и выполняют только функцию опоры.

Кроме мертвых элементов, в ксилеме имеются и живые клетки. Их масса может составлять до 25% общего объема древесины. Поскольку эти клетки имеют более или менее округлую форму, их называют паренхимой древесины. Как правило, в теле растения паренхима располагается двумя способами.

При первом – клетки располагаются в виде вертикальных тяжей – это тяжевая паренхима. При другом – паренхима образует горизонтальные лучи, которые называются сердцевинными лучами (они соединяют сердцевину и кору).

Считают, что паренхима выполняет ряд функций (к примеру, запасание веществ).

Флоэма (луб). Подобно ксилеме, флоэму относят к сложным тканям, т. к. она образована клетками нескольких типов. Основными из них являются проводящие, называемые ситовидными элементами.

Если проводящие элементы ксилемы образованы мертвыми клетками, то у флоэмы они в течение всего периода функционирования сохраняют живой, хотя и сильно измененный протопласт. По флоэме осуществляется отток пластических веществ от фотосинтезирующих органов. Все живые клетки обладают способностью проводить органические вещества.

Поэтому если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших.

Как и ксилема, флоэма развивается из апикальных меристем. Вначале в прокамбиальном тяже формируется протофлоэма. Она способна растягиваться по мере роста окружающих ее тканей. Когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных они представлены ситовидными клетками. Ситовидные поля в них рассеяны по боковым стенкам. В протопласте сохраняется ядро, которое, однако, подвергается некоторой деструкции.

Ситовидные элементы покрытосеменных называются ситовидными трубками. Как уже отмечалось, ситовидные трубки сообщаются между собой через ситовидные пластинки. Ядра в зрелых клетках отсутствуют.

Зато рядом с ситовидной трубкой присутствует клетка-спутница, которая образуется вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис. 169). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий и полноценно функционирующее ядро.

Характерно наличие огромного количества плазмодесм, приблизительно в десять раз большего, чем у других клеток. Полагают, что клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных трубок.

Структура зрелых ситовидных клеток имеет ряд особенностей. Вакуоль отсутствует, в результате чего цитоплазма сильно разжижается. Ядро отсутствует (у покрытосеменных) или находится в сморщенном состоянии и функционально малоактивно.

Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. В изобилии встречаются хорошо развитые митохондрии и пластиды.

Транспорт между клетками идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называют порами, но, в отличие от пор трахеид, они являются сквозными. Их происхождение до сих пор не вполне ясно. Вероятнее всего, они представляют собой сильно расширенные плазмодесмы, на стенках которых откладывается полисахарид каллоза. Поры редко встречаются поодиночке.

Как правило, они располагаются группами, образуя ситовидные поля. Если у примитивных форм ситовидные поля без особого порядка рассеяны по всей поверхности оболочки, то у более совершенных покрытосеменных располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку (рис. 170).

Если на ней имеется только одно ситовидное поле, ее называют простой, если несколько – сложной.

Если механизм движения воды по проводящим элементам ксилемы подчиняется законам гидродинамики и в основном ясен, то транспорт веществ по живым ситовидным элементам до конца еще не исследован.

Скорость передвижения растворов здесь составляет до 150 см/час, что более чем в тысячу раз превышает скорость свободной диффузии.

Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют необходимую для этого АТР.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они есть, то ситовидные

элементы служат один-два года, а затем замещаются новыми. Если камбий отсутствует, ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

Источник: http://www.compendium.su/biology/entering/100.html

4.4.2. Ткани высших растений

В процессе эволюции у высших растений совершенствование организации сопровождалось усложнением внутреннего строения — появлением органов и тканей.

Ткань — совокупность клеток, сходных по морфологическим и физиологическим признакам и выполняющих определенные функции. Орган состоит обычно из нескольких тканей.

Различают ткани:

1.образовательная (меристема) появляется по мере деления зиготы. Формирует тело зародыша,   по мере роста растения перемещается во все его точки роста – верхушки корней, стеблей, в основания междоузлий и листьев – это первичные меристемы (их клетки делятся в поперечном, радиальном и тангенциальном – параллельным поверхности – направлениях; лежат беспорядочно):

Верхушечные (апикальные)

Боковые (латеральные)

Вставочные (интеркалярные)

Основное свойство меристем – способность делиться митозом и дифференцироваться (преобразовываться в другие ткани).

Меристемы могут возникать и из уже имеющихся тканей – это вторичные меристемы (клетки делятся только в тангенциальном – параллельным поверхности – направлении; лежат четкими рядами):

Камбий – образовательная ткань корня и стебля, состоящая из клеток, при делении и дифференцировке которых с внутренней стороны от слоя камбия откладывается древесина, с внешней – луб (у голосеменных и двудольных растений)

Читайте также:  Биосинтез белков - биология

Феллоген (пробковый камбий)

Раневые меристемы

2. покровные ткани растений находятся на границе с внешней средой и защищают их от высыхания, механического повреждения, действия высоких и низких температур, чрезмерного испарения воды, проникновения микроорганизмов:

Кожица (эпидерма) в виде однорядного слоя клеток покрывает листья и однолетние побеги. Наружная поверхность клеток этой ткани часто покрыта кутикулой или восковым налетом, особенно развитых у растений засушливых местообитаний. Основные функции эпидермы — защитная и регуляция газообмена и испарения воды (связь с внешней средой – через устьица)

Пробка сменяет эпидерму, вследствие чего к осени зеленый цвет побегов переходит в бурый; из нескольких слоев отмерших клеток, стенки которых пропитаны жироподобным веществом суберином, непроницаемым для воды и газов.  Т.к. живые ткани, лежащие под пробкой, нуждаются в газообмене и удалении избытка влаги, то связь с внешней средой осуществляется через  разрывы в пробке, заполненные рыхло расположенными клетками — чечевички.

Пробка вместе со слоями отмерших клеток других тканей входит в состав корки, которая предохраняет стволы деревьев от механических повреждений, лесных пожаров, резкой смены температур и т. п. Корка ежегодно наращивается за счет клеток находящегося под ней камбия.

3. проводящие ткани служат для распространения по всему растению веществ, всасываемых корнями, и веществ, образующихся в листьях и молодых стеблях.

Различают:

Дальний  или осевой транспорт веществ (от листьев к корням и от корней к листьям)

Ближний или радиальный.

Проводящая система растений состоит из:

Ксилемы  или древесины – комплекс тканей, расположенных внутрь ль камбия или в проводящих пучках; обеспечивает восходящий ток воды и минеральных солей.                                                                            

Состоит из:

-сосудов (проводящая ткань)

– древесных волокон (механическая ткань)

-древесной паренхимы (основная ткань)

Флоэмы  или луба – комплекс тканей с внешней стороны от камбия или в проводящих пучках; служит для проведения нисходящим током продуктов фотосинтеза к местам их использования или отложения в запас (подземные органы, созревающие плоды и семена и др.).

Состоит из:

-ситовидных трубок (проводящая ткань)

-лубяных волокон  (механическая ткань)

-лубяной паренхимы (основная ткань)

       Дальний, или осевой, восходящий ток осуществляется по трахеидам и сосудам. Трахеиды — мертвые вытянутые клетки, лишенные цитоплазмы, имеющие одревесневшие стенки, в которых находятся поры. Через поровую мембрану происходит фильтрация растворов.

Ток жидкости по трахеидам медленный, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственными проводящими элементами ксилемы.

У покрытосеменных развиты сосуды — полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках имеются сквозные отверстия — перфорации, благодаря которым быстрота тока растворов многократно увеличивается.

Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность.

       Нисходящий ток органических веществ осуществляется по ситовидным трубкам, входящим в состав проводящей ткани — флоэмы (луб).

Ситовидные трубки состоят из члеников, поперечные перегородки которых пронизаны мелкими отверстиями, образующими «сито».

Клетки ситовидных трубок лишены ядер, но содержат живую цитоплазму, образующую единое целое с цитоплазмой соседних клеток. Скорость движения по ситовидным трубкам меньше, чем скорость движения по сосудам.

Элементы проводящей системы вместе с волокнами механической ткани образуют пучки. Сосудисто-волокнистые пучки хорошо видны в листьях в виде жилок, они распространены в стебле, корнях, плодах и объединяют растение в единое целое.

4. механические ткани формируют «внутренний скелет» растения; обеспечивают прочность его органов: сопротивление нагрузкам на растяжение, сжатие и изгиб.

Прочность и упругость клеток механических тканей достигается утолщением и одревеснением их оболочек. В молодых участках растущих органов механических тканей нет, т.к.

живые клетки, находясь в состоянии тургора, благодаря плотным клеточным стенкам приобретают упругость.

Наиболее распространенная классификация механических тканей:

Склеренхима – представлена волокнами – длинными узкими клетками с равномерно утолщенной одревесневающей клеточной стенкой и обычно отмершим протопластом. В корне, стебле, плодах. В составе ксилемы (древесные волокна), флоэмы (лубяные волокна) и т.д.

Склереиды – клетки округлой или кубовидной формы с толстыми стенками, способными раздревесневать (утрачивать лигнин). В тканях мезофилла листа, мякоти сочных плодов (каменистые клетки), «косточек» плодов костянок

Колленхима – свойственна только двудольным, под эпидермой надземных органов. Округлая или кубовидная форма клеток, живой протопласт, неравномерное утолщение клеточных стенок (свойства пружины)

5. основная ткань  или паренхима, состоит из живых тонкостенных клеток, располагающихся между другими тканями:

основная паренхима – в сердцевине стеблей

древесная паренхима – между сосудами и древесными волокнами в древесине

лубяная паренхима – между ситовидными трубками и волокнами в лубе

хлорофиллоносная паренхима – столбчатая ткань в листе под верхней эпидермой, губчатая – под нижней

запасающая паренхима – в эндосперме семян, клубнях, корнеплодах, плодах

воздухоносная паренхима – у водных растений с плавающими листьями и стеблями.

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/mnogoobrazie-organizmov-stroenie/4-4-2-tkani-vysshikh-rastenij

Ссылка на основную публикацию