Образование растениями кислорода в процессе фотосинтеза – биология

Лекция по биологии – Фотосинтез

Лекция по биологииФотосинтез

   Растения превращают солнечный свет в запасенную химическую энергию в два этапа: сначала они улавливают энергию солнечного света, а затем используют ее для связывания углерода с образованием органических молекул.

   Зеленые растения – биологи называют их автотрофами – основа жизни на планете. С растений начинаются практически все пищевые цепи. Они превращают энергию, падающую на них в форме солнечного света, в энергию, запасенную в углеводах (см.

Биологические молекулы), из которых важнее всего шестиуглеродный сахар глюкоза. Этот процесс преобразования энергии называется фотосинтезом. Другие живые организмы получают доступ к этой энергии, поедая растения.

Так создается пищевая цепь, поддерживающая планетарную экосистему.

Кроме того, воздух, которым мы дышим, благодаря фотосинтезу насыщается кислородом. Суммарное уравнение фотосинтеза выглядит так:

вода + углекислый газ + свет —> углеводы + кислородРастения поглощают углекислый газ, образовавшийся при дыхании, и выделяют кислород — продукт жизнедеятельности растений (см. Гликолиз и дыхание). К тому же, фотосинтез играет важнейшую роль в круговороте углерода в природе.Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению.

После эксперимента Ван-Гельмонта, поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (Frederick Blackman, 1866–1947) провел исследования и установил основные процессы фотосинтеза.

Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но, начиная с определенного уровня, дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза.

Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.

На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе.

Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.

Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, – молекулы хлорофилла.

Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул – эти кластеры принято называть Фотосистемой I и Фотосистемой II. Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем – в Фотосистеме I.

Когда фотон сталкивается с 250-400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды.

Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.После этого высокоэнергетический («быстрый») электрон перекидывают друг другу, как горячую картофелину, собранные в цепочку молекулярные переносчики.

При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке (см. Биологические молекулы). Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору.

Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.

В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.

) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Калвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Калвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14.

Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.Цикл превращения солнечной энергии в углеводы – так называемый цикл Калвина – сходен с циклом Кребса (см.

Гликолиз и дыхание): он тоже состоит из серии химических реакций, которые начинаются с соединения входящей молекулы с молекулой-«помощником» с последующей инициацией других химических реакций. Эти реакции приводят к образованию конечного продукта и одновременно воспроизводят молекулу-«помощника», и цикл начинается вновь.

В цикле Калвина роль такой молекулы-«помощника» выполняет пятиуглеродный сахар рибулозодифосфат (РДФ). Цикл Калвина начинается с того, что молекулы углекислого газа соединяются с РДФ.

За счет энергии солнечного света, запасенной в форме АТФ и НАДФ-H, сначала происходят химические реакции связывания углерода с образованием углеводов, а затем – реакции воссоздания рибулозодифосфата. На шести витках цикла шесть атомов углерода включаются в молекулы предшественников глюкозы и других углеводов.

Этот цикл химических реакций будет продолжаться до тех пор, пока поступает энергия. Благодаря этому циклу энергия солнечного света становится доступной живым организмам.В большинстве растений осуществляется описанный выше цикл Калвина, в котором углекислый газ, непосредственно участвуя в реакциях, связывается с рибулозодифосфатом.

Эти растения называются C3-растениями, поскольку комплекс «углекислый газрибулозодифосфат» расщепляется на две молекулы меньшего размера, каждая из которых состоит из трех атомов углерода. У некоторых растений (например, у кукурузы и сахарного тростника, а также у многих тропических трав, включая ползучий сорняк) цикл осуществляется по-другому.

Дело в том, что углекислый газ в норме проникает через отверстия в поверхности листа, называемые устьицами. При высоких температурах устьица закрываются, защищая растение от чрезмерной потери влаги. В C3-растения при закрытых устьицах прекращается и поступление углекислого газа, что приводит к замедлению фотосинтеза и изменению фотосинтетических реакций.

В случае же кукурузы углекислый газ присоединяется к трехуглеродной молекуле на поверхности листа, затем переносится во внутренние участки листа, где углекислый газ высвобождается и начинается цикл Калвина. Благодаря этому довольно сложному процессу фотосинтез у кукурузы осуществляется даже в очень жаркую, сухую погоду.

Растения, в которых происходит такой процесс, мы называем C4-растениями, поскольку углекислый газ в начале цикла транспортируется в составе четырехуглеродной молекулы. C3-растения – это в основном растения умеренного климата, а C4-растения в основном произрастают в тропиках.

Гипотеза Ван НиляПроцесс фотосинтеза описывается следующей химической реакцией:СО2 + Н2О + свет —> углевод + О2В начале XX века считалось, что кислород, выделяющийся в процессе фотосинтеза, образуется в результате расщепления углекислого газа. Эту точку зрения опроверг в 1930-е годы Корнелис Бернардус Ван Ниль (Van Niel, 1897–1986), в то время аспирант Стэнфордского университета в штате Калифорния. Он занимался изучением пурпурной серобактерии (на фото), которая нуждается для осуществления фотосинтеза в сероводороде (H2S) и выделяет в качестве побочного продукта жизнедеятельности атомарную серу. Для таких бактерий уравнение фотосинтеза выглядит следующим образом: СО2 + Н2S + свет —> углевод + 2S.Исходя из сходства этих двух процессов, Ван Ниль предположил, что при обычном фотосинтезе источником кислорода является не углекислый газ, а вода, поскольку у серобактерий, в метаболизме которых вместо кислорода участвует сера, фотосинтез возвращает эту серу, являющуюся побочным продуктом реакций фотосинтеза. Современное подробное объяснение фотосинтеза подтверждает эту догадку: первой стадией процесса фотосинтеза (осуществляемой в Фотосистеме II) является расщепление молекулы воды.

Мелвин КАЛВИН

Melvin Calvin, 1911–97

Источник: https://nashol.com/201008032781/lekciya-po-biologii-fotosintez.html

Процесс фотосинтеза в листьях растений

Осуществляется процесс фотосинтеза в листьях растений. Фотосинтез свойствен лишь зеленым растениям.

Эту важнейшую сторону деятельности листа полнее всего характеризует К. А. Тимирязев:

Строение листьев растений

Листья растений по анатомическому строению отличаются большим разнообразием, которое зависит и от вида растения, и от условий их роста. Лист сверху и снизу покрыт эпидермисом — покровной тканью с многочисленными отверстиями, называемыми устьицами. Под верхним эпидермисом расположена палисадная, или столбчатая паренхима, называемая ассимиляционной.

Под ней находится более рыхлая ткань — губчатая паренхима, за которой идет нижний эпидермис. Весь лист пронизан сетью жилок, состоящих из проводящих пучков, по которым проходят вода, минеральные и органические вещества.

Читайте также:  Оплодотворение и его значение, биология

Поперечный разрез листа

В столбчатой и губчатой ткани листа расположены зеленые пластиды — хлоропласты, содержащие пигменты. Наличием хлоропластов и содержащихся в них зеленых пигментов (хлорофиллов) объясняется окраска растений.

Огромная листовая поверхность, достигающая 30 000 — 50 000 кв. м на 1 га у разных растений, хорошо приспособлена для успешного поглощения СО2 из воздуха в процессе фотосинтеза.

Углекислый газ проникает в лист растения через устьица, расположенные в эпидермисе, поступает в межклетники и, проникая через оболочку клеток, попадает в цитоплазму, а затем в хлоропласты, где и осуществляется процесс ассимиляции.

Образующийся в этом процессе кислород диффундирует с поверхности хлоропластов в свободном состоянии.

Таким образом, через устьица осуществляется газообмен листьев с внешней средой — поступление углекислого газа и выделение кислорода в процессе фотосинтеза, выделение углекислого газа и поглощение кислорода в процессе дыхания. Кроме того, устьица служат для выделения паров воды.

Несмотря на то, что общая площадь устьичных отверстий составляет лишь 1—2% всей листовой поверхности, тем не менее при открытых устьицах углекислый газ проникает в листья со скоростью, превышающей в 50 раз поглощение его щелочью. Количество устьиц очень велико — от нескольких десятков до 1500 на 1 кв. мм.

Хлоропласты

Хлоропласты — зеленые пластиды, в которых происходит процесс фотосинтеза. Они расположены в цитоплазме. У высших растений хлоропласты имеют дискообразную или линзовидную форму, у низших они более разнообразны.

Хлоропласты в клетках зеленых растений

Размер хлоропластов у высших растений довольно постоянен, составляя в среднем 1 —10 мк.

Обычно в клетке содержится большое количество хлоропластов, в среднем 20—50, а иногда и больше. Расположены они главным образом в листьях, много их в незрелых плодах.

В растении общее количество хлоропластов огромно; во взрослом дереве дуба, например, площадь их равняется 2 га.

Хлоропласт имеет мембранную структуру. От цитоплазмы он отделен двухмембранной оболочкой. В хлоропласте находятся ламеллы, белково-липоидные пластинки, собранные в пучки и называемые гранами.

Хлорофилл расположен в ламеллах в виде мономолекулярного слоя. Между ламеллами находится водянистая белковая жидкость — строма; в ней встречаются крахмальные зерна и капли масла.

Строение хлоропласта хорошо приспособлено к фотосинтезу, так как разделение хлорофиллоносного аппарата на мелкие пластинки значительно увеличивает активную поверхность хлоропласта, что облегчает доступ энергии и перенос ее к химическим системам, участвующим в фотосинтезе.

Данные А. А. Табенцкого показывают, что хлоропласты все время изменяются в онтогенезе растения. В молодых листьях наблюдается мелкогранулярная структура хлоропластов, в листьях, закончивших рост,— крупногранулярная.

В старых листьях уже наблюдается распад хлоропластов. В сухом веществе хлоропластов содержится 20—45% белков, 20—40% липоидов, 10—12% углеводов и других запасных веществ, 10% минеральных элементов, 5—10% зеленых пигментов (хлорофилл а и хлорофилл б), 1—2% каротиноидов, а также небольшое количество РНК и ДНК. Содержание воды достигает 75%.

В хлоропластах имеется большой набор гидролитических и окислительно-восстановительных ферментов. Исследованиями Н. М. Сисакяна показано, что в хлоропластах происходит и синтез многих ферментов. Благодаря этому они принимают участие во всем сложном комплексе процессов жизнедеятельности растения.

Пигменты, их свойства и условия образования

Пигменты можно извлечь из листьев растений спиртом или ацетоном. В вытяжке находятся следующие пигменты: зеленые — хлорофилл а и хлорофилл б; желтые — каротин и ксантофилл (каротиноиды).

Хлорофилл

Хлорофилл представляет собой

(Ч. Дарвин),

так как благодаря ему возможен синтез органических веществ из неорганических СО2 и Н2О.

Хлорофилл не растворяется в воде, под влиянием солей, кислот и щелочей легко изменяется, поэтому было очень трудно установить его химический состав. Для извлечения хлорофилла обычно применяют этиловый спирт или ацетон.

Хлорофилл имеет следующие суммарные формулы: хлорофилл а — С55Н72О5N4Mg,        хлорофилл б — С55Н70О6N4Mg.

У хлорофилла а больше на 2 атома водорода и меньше на 1 атом кислорода, чем у хлорофилла б. Формулы хлорофилла можно представить и так:

Формулы хлорофилла а и б

Центральное место в молекуле хлорофилла занимает Мg; его можно вытеснить, подействовав на спиртовую вытяжку хлорофилла соляной кислотой. Зеленый пигмент превращается в бурый, называемый феофитином, в котором Мg замещается двумя атомами Н из соляной кислоты.

Восстановить зеленый цвет вытяжки очень легко внесением в молекулу феофитина магния или другого металла. Следовательно, зеленый цвет хлорофилла связан с наличием в его составе металла.

При воздействии на спиртовую вытяжку хлорофилла щелочью происходит отщепление спиртовых групп (фитола и метилового спирта); в этом случае зеленая окраска хлорофилла сохраняется, что указывает на сохранение ядра молекулы хлорофилла при этой реакции.

Химический состав хлорофилла у всех растений одинаков. Содержание хлорофилла а всегда больше (примерно в 3 раза), чем хлорофилла б. Общее количество хлорофилла невелико и составляет около 1 % от сухого вещества листа.

По своей химической природе хлорофилл близок к красящему веществу крови — гемоглобину, центральное место в молекуле которого занимает не магний, а железо. В соответствии с этим различаются и их физиологические функции: хлорофилл принимает участие в важнейшем восстановительном процессе в растении — фотосинтезе, а гемоглобин — в процессе дыхания животных организмов, перенося кислород.

Оптические свойства пигментов

Хлорофилл поглощает солнечную энергию и направляет ее на химические реакции, которые не могут протекать без энергии, получаемой извне. Раствор хлорофилла в проходящем свете имеет зеленый цвет, но при увеличении толщины слоя или концентрации хлорофилла он приобретает красный цвет.

Хлорофилл поглощает свет не сплошь, а избирательно. При пропускании белого света через призму получается спектр, состоящий из семи видимых цветов, которые постепенно переходят друг в друга.

При пропускании белого света через призму и раствор хлорофилла на полученном спектре наиболее интенсивное поглощение будет в красных и сине-фиолетовых лучах. Зеленые лучи поглощаются мало, поэтому в тонком слое хлорофилл имеет в проходящем свете зеленый цвет.

Однако с увеличением концентрации хлорофилла полосы поглощения расширяются (значительная часть зеленых лучей также поглощается) и без поглощения проходит только часть крайних красных. Спектры поглощения хлорофилла а и б очень близки.

В отраженном свете хлорофилл кажется вишнево-красным, так как он излучает поглощенный свет с изменением длины его волны. Это свойство хлорофилла называется флюоресценцией.

Каротин и ксантофилл

Каротин и ксантофилл имеют полосы поглощения только в синих и фиолетовых лучах. Их спектры близки друг другу.

Спектры поглощения хлорофиллом а и б

Поглощенная этими пигментами энергия передается хлорофиллу а, который является непосредственным участником фотосинтеза. Каротин считают провитамином А, так как при его расщеплении образуются 2 молекулы витамина А. Формула каротина — С40Н56, ксантофилла — С40Н54(ОН)2.

Условия образования хлорофилла

Образование хлорофилла осуществляется в 2 фазы: первая фаза — темновая, во время которой образуется предшественник хлорофилла — протохлорофилл, а вторая — световая, при которой из протохлорофилла на свету образуется хлорофилл.

Образование хлорофилла зависит как от вида растения, так и от ряда внешних условий. Некоторые растения, например проростки хвойных, могут позеленеть и без участия света, в темноте, но у большинства растений хлорофилл образуется из протохлорофилла только на свету.

В отсутствие света получаются этиолированные растения, имеющие тонкий, слабый, сильно вытянутый стебель и очень мелкие бледно-желтые листья. Если выставить этиолированные растения на свет, то листья быстро позеленеют. Это объясняется тем, что в листьях уже имеется протохлорофилл, который под воздействием света легко превращается в хлорофилл.

Большое влияние на образование хлорофилла оказывает температура; при холодной весне у некоторых кустарников листья не зеленеют до установления теплой погоды: при понижении температуры подавляется образование протохлорофилла.

Минимальной температурой, при которой начинается образование хлорофилла, является 2°, максимальной, при которой образование хлорофилла не происходит, 40°. Кроме определенной температуры, для образования хлорофилла необходимы элементы минерального питания, особенно железо.

При его отсутствии у растений наблюдается заболевание, называемое хлорозом. По-видимому, железо является катализатором при синтезе протохлорофилла, так как в состав молекулы хлорофилла оно не входит. Для образования хлорофилла также необходимы азот и магний, входящие в состав его молекулы. Важным условием является и наличие в клетках листа пластид, способных к позеленению.

При их отсутствии листья растений остаются белыми, растение не способно к фотосинтезу и может жить только до тех пор, пока не израсходует запасы семени. Это явление называется альбинизмом. Оно связано с изменением наследственной природы данного растения.

Количественные отношения между хлорофиллом и усваиваемой углекислотой

При большем содержании хлорофилла в растении процесс фотосинтеза начинается при меньшей интенсивности света и даже при более низкой температуре. С увеличением содержания хлорофилла в листьях фотосинтез возрастает, но до известного предела. Следовательно, нет прямой зависимости между содержанием хлорофилла и интенсивностью поглощения СО2.

Читайте также:  Обмен веществ в клетке - биология

Количество ассимилированного листом СО2 в час в пересчете на единицу содержащегося в листе хлорофилла тем выше, чем меньше хлорофилла. Р. Вильштеттером и А. Штолем была предложена единица, характеризующая соотношение между количеством хлорофилла и поглощенным углекислым газом.

Количество разложенной в единицу времени углекислоты, приходящееся на единицу веса хлорофилла, они назвали ассимиляционным числом.

Ассимиляционное число непостоянно: оно больше при малом содержании хлорофилла и меньше при высоком содержании его в листьях. Следовательно, молекула хлорофилла используется более продуктивно при низком его содержании в листе и продуктивность хлорофилла уменьшается с увеличением его количества. Данные введены в таблицу.

Таблица Ассимиляционное число в зависимости от содержания хлорофилла

(по Р. Вильштеттеру и А. Штолю)

Источник: https://LibTime.ru/agro/process-fotosinteza-v-listyax-rastenij.html

Биологический процесс фотосинтеза и его значение в природе

Фотосинтез является очень сложным биологическим процессом. Его изучает наука биология на протяжении многих лет, но, как показывает история изучения фотосинтеза, некоторые этапы до сих пор непонятны.

В научных справочниках последовательное описание этого процесса занимает несколько страниц. Цель этой статьи — описать такое явление, как фотосинтез, кратко и понятно для детей, в виде схем и объяснения.

Научное определение

Для начала важно узнать, что такое фотосинтез. В биологии определение звучит так: это процесс образования органических веществ (пищи) из неорганических (из углекислого газа и воды) в хлоропластах с помощью энергии света.

Чтобы понять это определение, можно представить совершенную фабрику — это любое зеленое растение, которое является фотосинтетиком.

«Топливом» для этой фабрики служит солнечный свет, растения используют воду, углекислый газ и минералы, чтобы производить пищу почти для всех форм жизни на земле.

Эта «фабрика» совершенная, потому что она, в отличие от других заводов, не приносит вред, а, наоборот, по ходу производства выделяет в атмосферу кислород и поглощает углекислый газ. Как видно, для фотосинтеза необходимы определенные условия.

Этот уникальный процесс можно представить в виде формулы или уравнения:

солнце +вода+углекислый газ = глюкоза+вода+кислород

Строение листа растения

Для того чтобы охарактеризовать сущность процесса фотосинтеза, необходимо рассмотреть строение листа. Если рассмотреть под микроскопом, можно увидеть прозрачные клетки, в которых находятся от 50 до 100 зеленых пятнышек. Это хлоропласты, где находится хлорофилл — основной фотосинтетический пигмент, и в которых осуществляется фотосинтез.

Хлоропласт похож на маленькую сумочку, а внутри него — сумочки еще меньше. Они называются тилакоидами. Молекулы хлорофилла находятся на поверхности тилакоидов и расположены по группам, которые называются фотосистемами. У большинства растений существует два вида фотосистем (ФС): фотосистемаI и фотосистемаII. К фотосинтезу способны только клетки, имеющие хлоропласт.

Описание световой фазы

Какие реакции происходят во время световой фазы фотосинтеза? В группе ФСII энергия солнечного света предается электронам молекулы хлорофилла, вследствие чего электрон заряжается, то есть «возбуждается настолько», что выпрыгивает из группы фотосистемы и «подхватывается» молекулой-переносчиком в мембране тилакоида. Этот электрон переходит от переносчика к переносчику, пока не разрядится. После этого он может использоваться в другой группе ФСI для замены электрона.

В группе фотосистемы II недостает электрона, и теперь она положительно заряженная и требует новый электрон. Но где взять такой электрон? Область в группе, известная как комплекс выделения кислорода, поджидает беззаботно «прогуливающуюся» молекулу воды.

В молекулу воды входит один атом кислорода и два атома водорода. Комплекс выделения кислорода в ФСII имеет марганца четыре иона, которые забирают электроны у атомов водорода. В результате происходит расщепление молекулы воды на два положительных иона водорода, два электрона и один атом кислорода.

Молекулы воды расщепляются, и атомы кислорода распределяются по парам, образуя при этом молекулы газа кислорода, который возвращает растение в воздух.

Ионы водорода начинают собираться в сумочке тилакоида, отсюда растение сможет их использовать, а с помощью электронов решается проблема потери в комплексе ФС II, который готов повторить этот цикл много раз в секунду.

В тилакоидном мешочке происходит скопление ионов водорода, и они начинают искать выход. Два иона водорода, образующиеся всегда при распаде молекулы воды, это далеко не всё: проходя путь из комплекса ФС II в комплекс ФС I, электроны притягивают в мешочек и другие ионы водорода. Затем эти ионы скапливаются в тилакоиде. Как им оттуда выбраться?

Оказывается, у них имеется «турникет» с одним выходом — фермент, который используется при выработке клеточного «топлива», называемого АТФ (аденозинтрифосфат). Проходя через этот «турникет», ионы водорода предоставляют энергию, которая необходима для перезарядки уже используемых молекул АТФ. Молекулы АТФ — это клеточные «батареи». Они отдают энергию для реакций внутри клетки.

При сборе сахара нужна еще одна молекула. Она называется НАДФ (никотинамидадениндинуклеотидфосфат). Молекулы НАДФ — это «грузовики», каждый из них доставляет по атому водорода к ферменту молекулы сахара. Образование НАДФ происходит в комплексе ФС I.

Пока фотосистема (ФС II) расщепляет молекулы воды и создает из них АТФ, фотосистема (ФС I) поглощает свет и выдает электроны, которые потом будут нужны при образовании НАДФ.

Молекулы АТФ и НАДФ находятся на хранении в строме и потом будут использованы для образования сахара.

Продукты световой фазы фотосинтеза:

Схема ночной фазы

После световой фазы протекает темновая стадия фотосинтеза. Впервые эту фазу открыл Кальвин. Впоследствии это открытие было названо с3 — фотосинтезом. У некоторых видов растений наблюдается вид фотосинтеза — с4.

В процессе фотосинтеза световой фазы сахар не производится. При свете образуется только АТФ и НАДФ. Ферменты используются в строме (пространстве вне тилакоида) для производства сахара. Хлоропласт можно сравнить с фабрикой, на которой бригады (ФС I и ФС II) внутри тилакоида производят грузовики и батареи (НАДФ и АТФ) для работы третьей бригады (особых ферментов) стромы.

Эта бригада образовывает сахар путем присоединения атомов водорода и молекулы углекислого газа благодаря химическим реакциям, используя при этом ферменты, находящиесяся в строме. Все три бригады работают днем, а «сахарная» и днем, и ночью, до того пока не израсходуется АТФ и НАДФ, которые остались после дневной смены.

В строме много атомов и молекул соединяются с помощью ферментов. Некоторые ферменты — это молекулы белка, имеющие особую форму, и это позволяет им брать те атомы или молекулы, которые нужны для определенной реакции.

После того как произойдет соединение, фермент отпускает новообразованную молекулу, и такой процесс повторяется постоянно.

В строме ферменты пускают по цепочке молекулы сахара, которые собрали, перестраивают их, заряжают с помощью АТФ, присоединяют углекислоту, добавляют водород, затем отправляют трехуглеродный сахар в другую часть клетки, где его преобразуют в глюкозу и множество других веществ.

Итак, темновая фаза характеризуется образованием молекул глюкозы. А из глюкозы синтезируются углеводы.

Фотосинтез световая и темновая фазы (таблица)

фаза световая фаза темновая
место осуществления процесса (органеллы клеток) мембрана тилакоидов стром
источник энергии солнце АТФ
исходные вещества, необходимые для реакции
  1. хлорофилл
  2. молекулы белка переносчики электронов
  3. АТФ
углекислый газ
вещества, которые продуцируются в конечном результате процесса
  1. свободный кислород
  2. АТФ
  3. НАДФ
глюкоза

Роль в природе

Каково же значение фотосинтеза в природе? Можно смело сказать, что жизнь на Земле зависит от фотосинтеза.

  • С его помощью растения вырабатывают кислород, который так необходим для дыхания.
  • В процессе дыхания выделяется углекислый газ. Если бы его не поглощали растения, то в атмосфере бы возник парниковый эффект. С появлением парникового эффекта может меняться климат, таять ледники, в результате может затопить много земельных участков.
  • Процесс фотосинтеза помогает питать все живые существа, а также осуществляет снабжение человечества топливом.
  • Благодаря выделяемому с помощью фотосинтеза кислороду в виде кислородно-озонового экрана атмосферы происходит защита всего живого от ультрафиолетового излучения.

Источник: https://1001student.ru/biologiya/biologicheskij-protsess-fotosinteza-i-ego-znachenie-v-prirode.html

ФОТОСИНТЕЗ

ФОТОСИНТЕЗ – образование органических веществ зелеными растениями и некоторыми бактериями с использованием энергии солнечного света.

В ходе фотосинтеза происходит поглощение из атмосферы диоксида углерода и выделение кислорода.

Первым обнаружил, что растения выделяют кислород, английский химик и философ Джозеф Пристли около 1770. Вскоре было установлено, что для этого необходим свет и что кислород выделяют только зеленые части растений. Затем исследователи нашли, что для питания растений требуется диоксид углерода и вода, из которых создается большая часть массы растений.

В 1817 французские химики Пьер Жозеф Пелатье (1788–1842) и Жозеф Бьенеме Каванту (1795–1877) выделили зеленый пигмент хлорофилл (по-гречески cróz – chloros, зеленый; julln – phyllon, лист).

Позднее российский ученый Климент Аркадьевич Тимирязев (1843–1920) показал, что фотосинтез проходит с наибольшей интенсивностью в тех областях солнечного спектра, где находятся максимумы поглощения хлорофилла.

К середине 19 в. было установлено, что фотосинтез является процессом, как бы обратным дыхательному. Французский ученый Жан Батист Буссенго (1802–1887) в своих работах, опубликованных в это время, утверждал, что в процессе фотосинтеза происходит выделение кислорода из углекислого газа. Это мнение в научной литературе господствовало длительное время.

Читайте также:  Нуклеиновые кислоты – днк и рнк - биология

В 1860-х было высказано предположение, что диоксид углерода в растениях восстанавливается до органических кислот, в частности, муравьиной и щавелевой. Затем эти кислоты при дальнейшем восстановлении переходят в углеводы. В 1861 русский химик Александр Михайлович Бутлеров получил при действии известковой воды на формальдегид сиропообразное вещество, содержащее углеводы.

Основываясь на этом открытии, немецкий химик Адольф Байер в 1870 высказал предположение, что первичным продуктом восстановления диоксида углерода в зеленых растениях является формальдегид, который затем превращается в углеводы. Эта гипотеза привлекла всеобщее внимание – она казалась наиболее правдоподобной. Однако она ничего не говорила о механизме выделения кислорода.

Этим вопросом занялся в конце 19 в. биохимик Алексей Николаевич Бах (1857–1946). На основе экспериментальных исследований он пришел к выводу, что при ассимиляции диоксида углерода источником выделяющегося молекулярного кислорода являются пероксиды, образующиеся из воды. Он же высказал предположение о биокаталитической роли белков-ферментов в фотосинтезе.

В 20 в. было установлено, что процесс фотосинтеза начинается на свету в фоторецепторах хлорофиллов, однако многие из последующих стадий могут протекать в темноте. Общий процесс является эндотермическим (DH° ~ 469 кДж/моль СО2). В нем участвует несколько типов хлорофилла, а также другие комплексы магния, железа и меди.

В 1941 американский биохимик Мелвин Калвин (1911–1997) показал, что первичный процесс фотосинтеза заключается в фотолизе молекул воды, в результате чего образуются кислород, выделяющийся в атмосферу, и водород, идущий на восстановление диоксида углерода до органических веществ.

Используя радиоактивный изотоп углерода 14С, бумажную хроматографию и классические методы органической химии, Калвин и его группа смогли проследить биосинтетические пути фотохимических процессов. К 1956 стал ясным полный путь превращения углерода при фотосинтезе.

За исследования в области ассимиляции диоксида углерода в растениях Калвин был удостоен в 1961 Нобелевской премии по химии.

Полная последовательность всех стадий фотосинтеза пока еще выяснена не до конца, однако интенсивная научная работа в этом направлении продолжается. Исследуется механизм электронного транспорта, продолжается выяснение природы комплекса, катализирующего образование кислорода, изучается структура реакционных центров и светособирающих комплексов.

В целом, химический баланс фотосинтеза может быть представлен в виде простого уравнения:

6CO2 + 6H2O = C6H12O6 + 6O2

Водород, необходимый для восстановления диоксида углерода до глюкозы, берется из воды, а выделяющийся в ходе фотосинтеза кислород является побочным продуктом. Процесс нуждается в энергии света, так как вода сама по себе не способна восстанавливать диоксид углерода.

В светозависимой части фотосинтеза (световой реакции) происходит расщепление молекул воды с образованием протонов, электронов и атома кислорода. Электроны, возбужденные энергией света, восстанавливают никотинадениндинуклеотидфосфат (НАДФ).

Образующийся НАДФ-Н является подходящим восстановителем для перевода диоксида углерода в органические соединения. Кроме того, в световой реакции образуется аденозинтрифосфат (АТФ), который также необходим для фиксации диоксида углерода.

В световых реакциях электроны переносятся по электрон-транспортной цепи от одной окислительно-восстановительной системы к другой. Возбуждение электронов для восстановления никотинадениндинуклеотидфосфата – сложный фотохимический процесс.

Он происходит в реакционных центрах (фотосистемах), которые представляют собой белковые комплексы, содержащие множество молекул хлорофилла и других пигментов. Только около 1% молекул хлорофилла участвуют непосредственно в фотохимическом переносе электронов.

Основная часть связана с другими пигментами в так называемом комплексе светособирающей антенны. Энергия кванта света, накопленного в комплексе, передается на реакционный центр, где и используется.

Последующие процессы могут протекать в темноте (темновая реакция). Полная последовательность превращения диоксида углерода в органические соединения называется циклом Калвина.

В зеленых водорослях и высших растениях фотосинтез происходит в хлоропластах, которые окружены двумя мембранами и содержат собственную ДНК. Световые реакции катализируются ферментами, находящиеся в сложенных стопками утолщенных мембранных мешках, а темновые реакции происходят во внутреннем пространстве хлоропластов.

Таким образом, в основе фотосинтеза лежит превращение электромагнитной энергии света в химическую энергию. Эта энергия, в конце концов, дает возможность превращать диоксид углерода в углеводы и другие органические соединения с выделением кислорода.

Фотосинтез, являющийся одним из самых распространенных процессов на Земле, обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете. Фотосинтез является единственным источником атмосферного кислорода.

Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90–95% сухого веса урожая. Остальные 5–10% приходятся на минеральные соли и азот, полученные из почвы.

Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.

Елена Савинкина

Источник: http://www.krugosvet.ru/enc/biologiya/fotosintez

Фотохимический этап

Происхождение кислорода при фотосинтезе.

Большое значение для раскрытия вопроса о сущности фотохимических реакций имело изучение особенностей бактериального фотосинтеза. Впервые на способность бактерий, содержащих пигменты, использовать энергию света для фотосинтеза указал Т. Энгельман (1883).

Дальнейшие исследования показали, что окрашенные бактерии содержат пигменты, относящиеся к группе хлорофиллов, а именно бактериохлорофиллы, и синтезируют органическое вещество из неорганических соединений при участии энергии света. Однако этот процесс не сопровождается выделением кислорода.

Это связано с тем, что в качестве источника протонов и электронов бактерии используют не воду, а сероводород или другие соединения. Такой тип ассимиляции С02 получил название бактериального фотосинтеза.

Использование воды в качестве источника водорода дало зеленым растениям в процессе эволюции огромное преимущество в силу повсеместного ее присутствия. Высказанное предположение получило экспериментальное под­тверждение в работах академика А.П. Виноградова (1941).

Он провел анализ изотопного состава (соотношения 160, 170, 180) кислорода разного происхождения. Оказалось, что кислород, выделенный из воды, воздуха и образующийся при фотосинтезе, имеет одинаковое соотношение изотопов, тогда как кислород С02 содержит относительно больше тяжелых изотопов. На основании этих исследований было сделано два вывода:

1) в процессе фотосинтеза разлагается вода;

2) в процессе фотосинтеза выделяется кислород, который является основным источником кислорода воздуха.

Поскольку весь кислород фотосинтеза выделяется из воды, общее уравнение фотосинтеза принимает следующий вид:

6С02 + 12Н20 + hv -> С6Н1206 + 602 + 6Н20

Вода в правой части уравнения не подлежит сокращению, поскольку ее кислород имеет иной изотопный состав (из С02). Рассмотрение этого уравнения показывает, что фотосинтез — это окислительно-восстановительный процесс, в котором вода окисляется до 02, а углекислый газ восстанавливается до углеводов.

Термины «окисление» и «восстановление» являются крайне важными для понимания фотосинтеза.

В этой связи необходимо отметить, что окисление — это не только присоединение кислорода, но и отнятие протонов, и потеря электрона, тогда как восстановление — это отнятие кислорода и присоединение протонов или электронов.

В 1937 г. Р. Хилл показал, что изолированные хлоропласты на свету в присутствии какого-либо легко восстанавливающегося вещества (акцептора водорода) окисляют воду. При этом выделяется кислород. В качестве акцептора водорода в опытах Хилла был использован хинон. При этом выделение кислорода хлоропластами на свету протекает в отсутствие углекислого газа (реакция Хилла):

2Н20 + hv -> 4Н+ + 4е- + 02;

хинон + 4Н+ + 4е- -> гидрохинон

Дальнейшие исследования показали, что те же самые ингибиторы, которые тормозят реакцию Хилла, приостанавливают и выделение кислорода в процессе фотосинтеза. Это дало основание считать, что световая фаза фотосинтеза включает разложение воды. Эти опыты также позволили установить возможность разделения двух процессов:

1) выделение кислорода;

2) восстановление С02.

Таким образом, в процессе фотосинтеза происходит разложение воды, на что затрачивается энергия света. В 1950 г.

было показано, что вместо искусственных акцепторов водорода, примененных Хиллом, можно использовать естественный кофермент никотинамидадениндинуклеотидфосфат — НАДФ.

Изолированные хлоропласты на свету восстанавливают НАДФ, одновременно выделяется кислород. Однако сущность происходящих на свету реакций была выяснена лишь в 1954 — 1958 гг. благодаря работам Д. Арнона.

В этом разделе:

– Циклический и нециклический поток электронов. Фотосинтетическое фосфорилирование

Источник: http://fizrast.ru/fotosintez/etapy/fotohimiya.html

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]