Ядро – биология

Ядро – строение животной клетки – клетка – биология для поступающих в вузы

КЛЕТКА

СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ

ЯДРО

Оформленное ядро клетки (рис. 17) имеется только у эукариот. У прокариот имеются такие ядерные структуры, как хромосомы, но они не заключены в особом компартменте. У большинства клеток форма ядра шаровидная или овоидная, однако встречаются ядра и другой формы (кольцевидные, палочковидные, веретеновидные, бобовидные, сегментированные и др.).

Размеры ядер колеблются в широких пределах – от 3 до 25 мкм. Наиболее крупным ядром обладает яйцеклетка. Большинство клеток человека имеет одно ядро, однако имеются двухядерные (например, некоторые нейроны, клетки печени, кардиомиоциты). Двух-, а иногда и многоядерность бывает связана с полиплоидией (греч. polyploos- многократный, eidos – вид).

Полиплоидия – это увеличение числа хромосомных наборов в ядрах клеток.

У эукариот хромосомы сосредоточены внутри ядра и отделены от цитоплазмы ядерной оболочкой, или кариотекой. Кариотека образуется за счет расширения и слияния друг с другом цистерн эндоплазматической сети.

Поэтому кариотека образована двумя мембранами – внутренней и наружной. Пространство между ними называют перинуклеарным пространством. Оно имеет ширину 20 – 50 нм и сохраняет сообщение с полостями эндоплазматической сети.

Со стороны цитоплазмы наружная мембрана нередко покрыта рибосомами.

Местами внутренняя и наружная мембраны кариотеки сливаются, а в месте слияния образуется пора. Пора не зияет: между ее краями упорядоченно располагаются белковые молекулы, так что в целом формируется поровый комплекс.

Комплекс поры (рис. 18) представляет собой сложную структуру, состоящую из двух рядов связанных между собой белковых гранул, каждая из которых содержит по 8 гранул, располагающихся на равном расстоянии друг от друга по обе стороны ядерной оболочки.

Эти гранулы по размерам превосходят рибосомы. Гранулы, расположенные на цитоплазматической стороне поры, обусловливают осмиофильный материал, окружающий пору.

В центре отверстия поры иногда имеется крупная центральная гранула, связанная с гранулами, описанными выше (возможно, это частицы, транспортирующиеся из ядра в цитоплазму).

Через поровые комплексы осуществляется избирательный транспорт молекул и частиц из ядра в цитоплазму и обратно. Поры могут занимать до 25% поверхности ядра. Количество пор у одного ядра достигает 3000 – 4000, а их плотность составляет около 11 на 1 мкм2 ядерной оболочки.

Из ядра в цитоплазму транспортируются в основном разные виды РНК. Из цитоплазмы в ядро поступают все ферменты, необходимые для синтеза РНК и регуляции интенсивности этого синтеза.

В некоторых клетках молекулы гормонов, которые тоже регулируют активность синтеза РНК, поступают из цитоплазмы в ядро.

Внутренняя поверхность кариотеки связана с многочисленными промежуточными филаментами. В совокупности они образуют здесь тонкую пластинку, называемую ядерной ламиной. К ней прикреплены хромосомы. Ядерная пластинка связана с поровыми комплексами и играет главную роль в поддержании формы ядра. Она построена из промежуточных филаментов особой структуры.

Нуклеоплазма представляет собой коллоид (обычно в форме геля). По ней транспортируются различные молекулы, она содержит множество разнообразных ферментов, в нее с хромосом поступают РНК. В живых клетках она внешне гомогенна.

После фиксации и обработки тканей для световой или электронной микроскопии в кариоплазме становятся видными два типа хроматина (греч. chroma – краска): хорошо окрашивающийся электроноплотный гетерохроматин, образованный осмиофильны- ми гранулами размером 10 – 15 нм и фибриллярными структурами толщиной около 5 нм, и светлый эухроматин.

Гетерохроматин расположен в основном вблизи внутренней ядерной мембраны, контактируя с ядерной пластинкой и оставляя свободными поры, и вокруг ядрышка. Эухроматин находится между скоплениями гетерохроматина.

По сути дела, хроматин – это комплексы веществ, которыми образованы хромосомы – ДНК, белок и РНК в соотношении 1 : 1,3 : 2. Основа каждой хромосомы образована ДНК, молекула которой имеет вид спирали. Она упакована различными белками, среди которых различают гистоновые и негистоновые.

В результате ассоциации ДНК с белками образуются дезоксинуклеопротеиды (ДНП).

Хромосомы и ядрышки. В хромосоме (рис. 19) молекула ДНК упакована компактно.

Так, информация, заложенная в последовательности 1 млн нуклеотидов при линейном расположении, заняла бы отрезок длиной 0,34 мм. В результате компактиза- ции она занимает объем 10-15 см3.

Длина одной хромосомы человека в растянутом виде около 5 см, длина всех хромосом около 170 см, а их масса 6 х 10-12 г.

ДНК ассоциирована с белками-гистонами, в результате чего образуются нуклеосомы, являющиеся структурными единицами хроматина.

Нуклеосомы, напоминающие бусины диаметром 10 нм, состоят из 8 молекул гистонов (по две молекулы гистонов Н2А, Н2Б, НЗ и Н4), вокруг которых закручен участок ДНК, включающий 146 пар нуклеотидов.

Между нуклеосомами располагаются лин- керные участки ДНК, состоящие из 60 пар нуклеотидов, а гистон Н1 обеспечивает взаимный контакт соседних нуклеосом. Нуклеосомы – это лишь первый уровень укладки ДНК.

Хроматин представлен в виде фибрилл толщиной около 30 нм, образующих петли длиной около 0,4 мкм каждая, содержащие от 20 000 до 30 000 пар нуклеотидов, которые, в свою очередь, еще больше компактизируются, так что метафазная хромосома имеет средние размеры 5 х 1,4 мкм.

В результате суперспирализации ДНП в делящемся ядре хромосомы (греч. chroma – краска, soma – тело) становятся видимыми при увеличении светового микроскопа. Каждая хромосома образована одной длинной молекулой ДНП.

 Они представляют собой удлиненные палочковидные структуры, имеющие два плеча, разделенные центромерой.

В зависимости от ее расположения и взаимного расположения плеч выделяют три типа хромосом: метацентрические, имеющие примерно одинаковые плечи; акроцен- трические, имеющие одно очень короткое и одно длинное плечо; субметацентрические, у которых одно длинное и одно более короткое плечо.

Некоторые акроцентрические хромосомы имеют спутников (сателлитов) – мелкие участки короткого плеча, соединенные с ним тонким неокрашивающимся фрагментом (вторичная перетяжка). В хромосоме имеются эу- и гетерохроматиновые участки. Последние в неделящемся ядре (вне митоза) остаются компактными. Чередование эу- и гетерохроматиновых участков используют для идентификации хромосом.

Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНП, уложенную в виде суперспирали.

При спирализации участки эу- и гетерохроматина укладываются закономерным образом, так что на протяжении хроматид образуются чередующиеся поперечные полосы. Их выявляют при помощи специальных окрасок. Поверхность хромосом покрыта различными молекулами, главным образом, рибонуклеопротеинами (РНП).

В соматических клетках имеются по две копии каждой хромосомы, их называют гомологичными. Они одинаковы по длине, форме, строению, расположению полос, несут одни и те же гены, которые локализованы одинаково. Гомологичные хромосомы могут различаться аллелями генов, содержащихся в них.

 Ген – это участок молекулы ДНК, на котором синтезируется активная молекула РНК. Гены, входящие в состав хромосом человека, могут содержать до двух млн пар нуклеотидов.

Деспирализованные активные участки хромосом не видны под микроскопом. Лишь слабая гомогенная базофилия нуклеоплазмы указывает на присутствие ДНК; их можно выявить также гистохимическими методами.

Такие участки относят к эухроматину. Неактивные сильно спирализованные комплексы ДНК и высокомолекулярных белков выделяются при окрасках в виде глыбок гетерохроматина.

Хромосомы фиксированы на внутренней поверхности кариотеки к ядерной ламине.

Хромосомы в функционирующей клетке обеспечивают синтез РНК, необходимых для последующего синтеза белков. При этом осуществляется считывание генетической информации – ее транскрипция. Не вся хромосома принимает в ней непосредственное участие.

Разные участки хромосом обеспечивают синтез различных РНК. Особенно выделяются участки, синтезирующие рибосомные РНК (рРНК); ими обладают не все хромосомы. Эти участки называют ядрышковыши организаторами. Ядрышковые организаторы образуют петли. Верхушки петель разных хромосом тяготеют друг к другу и встречаются вместе.

Таким образом формируется структура ядра, именуемая ядрышком (рис. 20). В нем различают три компонента: слабоокрашенный компонент соответствует петлям хромосом, фибриллярный – транскрибированной рРНК и глобулярный – предшественникам рибосом.

Хромосомы являются ведущими компонентами клетки, регулирующими все обменные процессы: любые метаболические реакции возможны только с участием ферментов, ферменты же всегда белки, белки синтезируются только с участием РНК.

Вместе с тем хромосомы являются и хранителями наследственных свойств организма. Именно последовательность нуклеотидов в цепях ДНК определяет генетический код.

Источник: http://www.compendium.su/biology/entering/11.html

Ядро

Вопрос 1. Каковы функции ядра клетки?

В ядре содержится вся информация о процессах жизнедеятельности, росте и развитии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а следовательно, все процессы обмена веществ и энергии, протекающие в клетке.

Вопрос 2. Какие организмы относятся к прокариотам?

Прокариоты – это организмы, клетки которых не имеют оформленного ядра. К ним относят бактерии, синезеленые водоросли и археи.

Вопрос 3. Как устроена ядерная оболочка?

Ядерная оболочка состоит из двух мембран, пронизанных порами. Через поры различные вещества могут проникать в ядро и обратно. Наружная мембрана имеет многочисленные выступы, связывающие ядро с цитоплазмой клетки.

Вопрос 4. Что собой представляет хроматин?

Хроматин представляет собой нити ДНК. Перед делением клетки он соединяется с белками, наматываясь на них, и образует хромосомы.

Вопрос 5. Каковы функции ядрышек?

Ядрышки – участки ДНК, которые отвечают за синтез молекул РНК и белков, использующихся клеткой для построения рибосом.

Вопрос 6. Из чего состоит хромосома?

Хромосома представляет собой молекулу ДНК, соединенную с особым белком, придающим ей компактность.

Вопрос 7. Где располагаются хромосомы у бактерий?

Строго говоря, хромосомы у бактерий отсутствуют.

Кольцевая ДНК, называемая бактериальной “хромосомой”, располагается у бактерий в центральной части цитоплазмы клетки.

Вопрос 8. Что такое кариотип?

Кариотипом называется определенный набор хромосом, характерный для данного вида организмов. Кариотип характеризуется не только числом хромосом, но и их размерами, формой, расположением центромера.

Вопрос 9. Как называется набор хромосом в соматических клетках?

Как правило, соматические клетки содержат двойной набор хромосом, который называется диплоидным.

Вопрос 10. Какой набор хромосом в гаметах?

Гаметы содержат только по одной хромосоме каждого вида, т. е. имеют одинарный набор хромосом, который называется гаплоидным.

Вопрос 11. Какой гаплоидный набор хромосом в клетках рака, если диплоидный равен 118?

Если диплоидный набор хромосом в клетках равен 118, то гаплоидный будет в два раза меньше -59.

Вопрос 12. Может ли диплоидный набор содержать нечетное число хромосом?

Диплоидный набор хромосом может содержать нечетное количество хромосом. Существуют организмы, у которых в соматических клетках имеется только одна половая хромосома. Например, у некоторых насекомых самки гомогаметны, а самцы имеют только одну половую хромосому.

Источник: http://home-task.com/yadro/

Что такое ядро в биологии? Строение и функции ядра

В каждой живой клетке протекает множество биохимических реакций и процессов. Чтобы контролировать их, а также регулировать многие жизненно важные факторы, необходима специальная структура. Что такое ядро в биологии? Благодаря чему оно эффективно справляется с поставленной задачей?

Что такое ядро в биологии. Определение

Ядро – необходимая структура любой клетки организма. Что такое ядро? В биологии это важнейший компонент каждого организма. Ядро можно обнаружить и у одноклеточных простейших, и у высокоорганизованных представителей эукариотического мира. Главная функция этой структуры – хранение и передача генетической информации, которая здесь же и содержится.

После оплодотворения яйцеклетки сперматозоидом происходит слияние двух гаплоидных ядер. После слияния половых клеток образуется зигота, ядро которой уже несет диплоидный набор хромосом. Это значит, что кариотип (генетическая информация ядра) уже содержит копии генов и матери, и отца.

Диплоидное ядро присутствует практически во всех эукариотических клетках. Гаплоидным ядром обладают не только гаметы, но и многие представители простейших организмов.

Сюда относятся некоторые одноклеточные паразиты, водоросли, свободноживущие формы одноклеточных.

Стоит отметить, что большинство из перечисленных представителей имеют гаплоидное ядро лишь на определенной стадии жизненного цикла.

Состав ядра

Какова характеристика ядра? Биология тщательно изучает состав ядерного аппарата, т. к. это может дать толчок в развитии генетики, селекции и молекулярной биологии.

Ядро – это двумембранная структура. Мембраны являются продолжением эндоплазматической сети, что необходимо для транспорта образованных веществ из клетки. Содержимое ядра называется нуклеоплазма.

Хроматин – основное вещество нуклеоплазмы. Состав хроматина разнообразен: здесь находятся в первую очередь нуклеиновые кислоты (ДНК и РНК), а также белки и многие ионы металлов. ДНК в нуклеоплазме расположена упорядочено в виде хромосом. Именно хромосомы при делении удваиваются, после чего каждый их наборов переходит в дочерние клетки.

РНК в нуклеоплазме чаще всего встречается двух типов: мРНК и рРНК. Матричная РНК образуется в процессе транскрипции – считывания информации с ДНК. Молекула такой рибонуклеиновой кислоты позже покидает ядро и в дальнейшем служит матрицей для образования новых белков.

Рибосомальная РНК образуется в специальных структурах под названием ядрышки. Ядрышко построено из концевых участков хромосом, образованных вторичными перетяжками. Эта структура может быть видна в световой микроскоп в виде уплотненного пятнышка на ядре. Рибосомальные РНК, которые синтезируются здесь, также поступают в цитоплазму и далее вместе с белками образуют рибосомы.

Читайте также:  Органические соединения. Гормоны и их свойства. Фитогормоны

Непосредственное влияние на функции оказывает состав ядра. Биология как наука изучает свойства хроматина для лучшего пониманию процессов транскрипции и деления клетки.

Функции ядра. Биология процессов в ядре

Первой и самой важной функцией ядра является хранение и передача наследственной информации. Ядро – уникальная структура клетки, т. к. в нем содержится большая часть генов человека.

Кариотип может быть гаплоидный, диплоидный, триплоидный и так далее. Плоидность яда зависит от функции самой клетки: гаметы гаплоидные, а соматические клетки диплоидные.

Клетки эндосперма покрытосеменных растений триплоидные, и, наконец, многие сорта посевных культур имеют полиплоидный набор хромосом.

Передача наследственной информации в цитоплазму из ядра происходит при образовании мРНК. В процессе транскрипции нужные гены кариотипа считываются, и в итоге синтезируются молекулы матричной или информационной РНК.

Также наследственность проявляется при делении клетки митозом, мейозом или амитозом. В каждом из случаев ядро выполняет свою определенную функцию.

Например, в профазе митоза разрушается оболочка ядра и сильно компактизированные хромосомы попадают в цитоплазму. Однако в мейозе перед разрушением мембраны в ядре происходит кроссинговер хромосом.

А в амитозе ядро вовсе разрушается и вносит небольшой вклад в процессе деления.

Кроме того, ядро косвенно участвует в транспорте веществ из клетки из-за непосредственной связи мембраны с ЭПС. Вот что такое ядро в биологии.

Форма ядер

Ядро, его строение и функции могут зависеть от формы мембраны. Ядерный аппарат может быть округлым, вытянутым, в виде лопастей и т. д. Часто форма ядра специфична для отдельных тканей и клеток. Одноклеточные организмы различаются по типу питания, жизненного цикла, а вместе с тем различаются и формы мембраны ядер.

Разнообразие в форме и размере ядра можно проследить на примере лейкоцитов.

  • Ядро нейтрофилов может быть сегментированным и не сегментированным. В первом случае говорят о подковообразном ядре, и такая форма характерна для молодых клеток. Сегментированное ядро – это результат образования нескольких перегородок в мембране, в результате чего образуется несколько частей, связанных между собой.
  • У эозинофилов ядро имеет характерную гантелевидную форму. В этом случае ядерный аппарат состоит из двух сегментов, связанных перегородкой.
  • Почти весь объем лимфоцитов занят огромным ядром. Лишь небольшая часть цитоплазмы остается по периферии клетки.
  • В железистых клетках насекомых ядро может иметь разветвленное строение.

Количество ядер в одной клетке может быть разным

Не всегда в клетке организма присутствует только одно ядро. Порой необходимо присутствие двух или более ядерных аппаратов для осуществления нескольких функций одновременно. И наоборот, некоторые клетки могут вовсе обходиться без ядра. Вот некоторые примеры необычных клеток, в которых ядер больше одного или оно вообще отсутствует.

1. Эритроциты и тромбоциты. Эти форменные элементы крови транспортируют гемоглобин и фибриноген соответственно. Чтобы одна клетка смогла вместить максимальное количество вещества, она утратила свое ядро.

Характерна такая особенность не для всех представителей животного мира: у лягушек в крови находятся огромные по размерам эритроциты с ярко выраженным ядром.

Это показывает примитивность данного класса в сравнении с более развитыми таксонами.

2. Гепатоциты печени. Эти клетки содержат в себе два ядра. Одно из них регулирует очистку крови от токсинов, а другое отвечает за образование гемма, который в последующем войдет в состав гемоглобина крови.

3. Миоциты поперечно-полосатой скелетной ткани. Мышечные клетки многоядерные. Это связано с тем, что в них активно проходит синтез и распад АТФ, а также сборка белков.

Особенности ядерного аппарата у простейших

Для примера рассмотрим два вида простейших: инфузории и амебы.

1. Инфузория-туфелька. Этот представитель одноклеточных организмов имеет два ядра: вегетативное и генеративное. Т. к. они отличаются как по функциям, так и по размерам, такая особенность получила название ядерного дуализма.

Вегетативное ядро отвечает за повседневную жизнедеятельность клетки. Оно регулирует процессы ее метаболизма. Генеративное ядро участвует в клеточном делении и в конъюгации – половом процессе, при котором происходит обмен генетической информацией с особями того же вида.

2. Амебы. Яркие представители – дизентерийная и кишечная амебы. Первая относится к агрессивным паразитам человека, а вторая – обычный симбионт, который живет в кишечнике и не причиняет никакого вреда. Т. к.

дизентерийная амеба паразитирует тоже в кишечнике, важно отличать эти два вида между собой.

Для этого используют особенность ядерного аппарата: у дизентерийной амебы может быть до 4 ядер, а у кишечной амебы от 0 до 8.

Заболевания

Многие генетические заболевания связаны с нарушениями в наборе хромосом. Вот список наиболее известных отклонений в генетическом аппарате ядра:

  • синдром Дауна;
  • сиддром Патау;
  • синдром Эдвардса;
  • синдром Клайнфелтера;
  • синдром Шерешевского-Тернера.

Список можно продолжать, и каждая из болезней отличается порядковым номером пары хромосом. Также подобные заболевания часто затрагивают половые X и Y хромосомы.

Заключение

Ядро играет важную роль в процессе жизнедеятельности клетки. Оно регулирует биохимические процессы, является хранилищем наследственной информации. Транспорт веществ из клетки, синтез белков также связаны с функционированием этой центральной структуры клетки. Вот что такое ядро в биологии.

Источник: http://4u-pro.ru/obrazovanie/chto-takoe-yadro-v-biologii-stroenie-i-funkcii-yadra

Лекция 3. Строение ядра. Деление клетки

План

1. Строение и функции клеточного ядра

2. Хроматин и хромосомы

3. Клеточный и митотический циклы клетки

4. Пролиферация клеток

Строение и функции клеточного ядра

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. ( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

1) ядерная оболочка;

2) кариоплазма;

3) ядрышко;

4) хроматин или хромосомы. Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках.

В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах).

У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Хроматин и хромосомы

Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке.

Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму.

Например, в деспирализованном (вытянутом) состоянии длина молекулы ДНК хромосомы человека достигает около 6 см, что примерно в 1000 раз превышает диаметр ядра клетки. Несмотря на то, что в неделящихся клетках хроматин находится в деспирализованном состоянии, тем не менее отдельные его участки спирализованы, т.е.

хроматин неоднороден по структуре.

Спирализованные участки хроматина называются гетерохроматин, а деспирализованные – эухроматин. На участках эухроматина идут процессы транскрипции (синтез иРНК).

Гетерохроматин – неактивный участок хроматина, здесь не происходит транскрипции.

В начале клеточного деления хроматин скручивается (спирализуется) и образует хромосомы, которые хорошо различимы в световой микроскоп. Значит, хромосома – суперспирализованный хроматин. Спирализация достигает своего максимума в метафазе митоза. Каждая метафазная хромосома состоит их двух сестринских хроматид.

Хроматиды содержат одинаковые молекулы ДНК, которые образуются при удвоении (репликации) ДНК в синтетический период интерфазы. Хроматиды соединены друг с другом в области первичной перетяжки – центромеры. Центромеры делят хромосомы на два плеча.

В зависимости от места расположения центромеры различают следующие типы хромосом:

1) метацентрические (равноплечие);

2) субметацентрические (неравноплечие);

3) акроцентрические (палочковидные);

4) спутничные (имеют вторичную перетяжку, которая отделяет небольшой участок хромосомы, называемый спутником).

Число, величина и форма хромосом в ядрах клеток являются важными знаками каждого вида. Набор хромосом соматических клеток данного вида называется кариотипом.

Клеточный (или жизненный) и митотический циклы клетки

Жизненный цикл клетки

G1 – пресинтетический период

S – синтетический период

G2 – постинтетический период

G0 – период пролиферативного покоя

Клеточным циклом или жизненным циклом клетки называется совокупность процессов, происходящих в клетке от 1-го деления (появление ее в результате деления) до следующего деления или до смерти клетки.

Митотический цикл – период подготовки клетки к делению и само деление. Митотический цикл клетки состоит из интерфазы и митоза. Интерфаза разделена на 3 периода:

1. Пресинтетический или постмитотический.

2. Синтетический.

3. Постсинтетический или премитотический.

Продолжительность митотического цикла составляет от 10 до 50 часов. В пресинтетический период клетка выполняет свои функции, увеличивается в размерах, т.е. активно растет, увеличивается количество митохондрий, рибосом, идет синтез белков, нуклеотидов, накапливается энергия в виде АТФ, синтезируется РНК.

Хромосомы представляют собой тонкие хроматиновые нити, каждая состоит из одной хроматиды. Содержание генетического материала в клетке обозначают следующим образом: с- количество ДНК в одной хроматиде, n – набор хромосом.

Клетка в G1 содержит диплоидный набор хромосом, каждая хромосома имеет одну хроматиду (2с ДНК 2n хромосом).

В S- периоде происходит репликация молекул ДНК и их содержание в клетке удваивается, каждая хромосома становится двухроматидной (т.е. хроматида достраивает себе подобную). Генетический материал становится 4с2п, центриоли клетки тоже удваиваются.

Продолжительность S- периода у млекопитающих 6-10 часов. Клетка продолжает выполнять свои специфические функции.

В G2 – периоде клетка готовится к митозу: накапливается энергия, затухают все синтетические процессы, клетка прекращает выполнять основные функции, накапливаются белки для построения веретена деления. Содержание генетической информации не изменяется (4с2n). Продолжительность этого периода 3-6 часов.

Митоз – это непрямое деление, основной способ деления соматических клеток.

Митоз – непрерывный процесс и условно делится на 4 стадии: профаза, метафаза, анафаза, телофаза. Наиболее продолжительны первая и последняя. Длительность митоза 1-2 часа.

1. Профаза. В начале профазы центриоли расходятся к полюсам клетки, от центриолей начинают формироваться микротрубочки, которые тянутся от одного полюса к другому и по направлению к экватору клетки, образуя веретено деления.

К концу профазы растворяются ядрышки, ядерная оболочка. К центромерам хромосом прикрепляются нити веретена деления, хромосомы спирализуются и устремляются к центру клетки.

Содержание генетической информации при этом не изменяется (4с2n).

2. Метафаза. Длительность 2-10 мин. Короткая фаза, хромосомы располагаются на экваторе клетки, причем центромеры всех хромосом располагаются в одной плоскости – экваториальной.

Читайте также:  Семейство сложноцветных, или астровых (более 20 тысяч видов) - биология

Между хроматидами появляются щели. В области центромер с двух сторон имеются небольшие дисковидные структуры – кинетохоры.

От них так же, как и от центриолей отходят микротрубочки, которые располагаются между нитями веретена деления.

Существует точка зрения, что именно кинетохорные микротрубочки заставляют центромеры всех хромосом выстраиваться в области экватора. Это стадия наибольшей спирализации хромосом, когда их удобнее всего изучать. Содержание генетической информации при этом не изменяется (4с2n).

3. Анафаза длится 2-3 минуты, самая короткая стадия. В анафазе происходит расщепление центромер и разделение хроматид. После разделения одна хроматида (сестринская хромосома) начинает двигаться к одному полюсу, а другая половина – к другому.

Предполагается, что движение хроматид обусловлено скольжением кинетохорных трубочек по микротрубочкам центриолей. Именно микротрубочки генерируют силу, обуславливающую расхождение хроматид. По другой версии, нити веретена деления плавятся и увлекают за собой хроматиды.

В клетке находится два диплоидных набора хромосом- 4с4n (у каждого полюса 2с2n).

4. Телофаза. В телофазу формируются ядра дочерних клеток, хромосомы деспирализуются, строятся ядерные оболочки, в ядре появляются ядрышки.

Цитокинез – деление цитоплазмы, происходит в конце телофазы

В животных клетках цитоплазматическая мембрана впячивается внутрь. Клеточные мембраны смыкаются, полностью разделяя две клетки. В растительных клетках из мембран пузырьков Гольджи образуется клеточная пластинка, расположенная в экваториальной плоскости. Клеточная пластинка, разрастаясь полностью, разделяет две дочерние клетки. В каждой клетке 2с 2n.

Митоз

Значение митоза

1. Поддержание постоянства числа хромосом. Митоз – наследственно равное деление.

Биологическое значение митоза состоит в строго одинаковом распределении сестринских хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток и сохраняет преемственность в ряду клеточных поколений.

2. Обеспечивание роста организма

3.Замещение изношенных клеток, поврежденных тканей, регенерацию утраченных частей.

Так, у человека замещаются клетки кожи, эпителий кишечника, эпителий легких, клетки крови – всего в день 1011 клеток.

4. Митоз лежит в основе бесполого размножения.

Амитоз – прямое деление клетки путем перешнуровки ядра без спирализации чивается равномерное распределение генетического материала между дочерними ядрами.

После амитотического деления клетки не могут митотически делиться. Амитозом делятся клетки при воспалительных процессах, злокачественном росте.

Амитоз встречается в клетках некоторых специализированных тканей, например, в поперечно – полосатой мускулатуре, соединительной ткани.

Пролиферация клеток

Пролиферация – увеличение числа клеток путем митоза, которое приводит к росту и обновлению ткани. Интенсивность пролиферации регулируется веществами, которые вырабатываются как внутри клеток, так и вдали от клеток. Современные данные свидетельствуют о том, что одним из регуляторов пролиферации на клеточном уровне являются кейлоны.

Кейлоны – гормоноподобные вещества, являющиеся полипептидами или гликопротеинами. Они образуются всеми клетками и внутри клеток высших организмов, обнаружены в различных жидкостях организма, в том числе и в моче. Кейлоны подавляют митотическую активность клеток.

Так же они участвуют в регуляции роста тканей, заживлении ран, иммунных реакциях.

Гормональные механизмы – дистантные регуляторы пролиферации на организменном уровне. Например, уровень эритроцитов в высокогорных районах повышается за счет секреции в специализированных клетках почек гормона эритропоэтина. У жителей высокогорья количество эритроцитов больше, чем у людей, живущих на равнине.

Кроме того, существуют гипотезы о причинах, побуждающих клетку делиться. Например:

– объемная – клетка, достигнув определенного объема, делится. Изменяются ядерно-цитоплазматические отношения (от 1/6 до 1/69),

– гипотеза «митогенетических лучей». Делящиеся клетки стимулируют к митозу расположенные рядом клетки,

– гипотеза «раневых гормонов». Поврежденные клетки выделяют особые вещества, способствующие митозу неповрежденных клеток.

Источник: http://bio.bobrodobro.ru/8534

Ядро клетки

Ядро клетки — это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, размножением, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы — подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др.

Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению.

Количество ядер клетки также неодинаково — большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа.

В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения  в  ней   резервных   веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см.

Цитоплазма) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,— полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) хромосомы (см.

), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых хроматином); 4) одно или несколько сферических телец — ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды — продукт соединения нуклеиновых кислот с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки.

В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки.

В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки — амитоз и самый распространенный способ деления ядер клетки— типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. Цитогенетические исследования).

См. также Клетка.

Ядро клетки — важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.

) дезоксирибонуклеиновая кислота (ДНК),— носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды.

Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.

) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона.

В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер.

Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой.

В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро.

Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов.

У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки  хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.

), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно.

В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию.

Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе  жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 —  цитоплазма; 2 — аппарат Гольджи; 3 — центросомы; 4 — эндоплазматический ретикулум; 5 — митохондрии; 6 — оболочка клетки; 7 — оболочка ядра; 8 — ядрышко; 9 — ядро.

При делении клеток — кариокинезе или митозе (см.) — ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы.

Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки.

В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности.

У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза.

В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера—Шерешевского и др.

) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь.

Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3).

В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.

Рис. 2.

Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 — ранняя профаза; 2 — поздняя профаза (исчезновение ядерной оболочки); 3 — метафаза (стадия материнской звезды), вид сверху; 4 — метафаза, вид сбоку; 5 — анафаза, начало расхождения хромосом; 6 — анафаза, хромосомы разошлись; 7 — телофаза, стадия дочерних клубков; 8 — телофаза и разделение клеточного тела.
Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 — нормальная телофаза; 2—4 — телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 — то же в кроветворных клетках морской свинки; 7 — хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 — фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Читайте также:  Состав внутренней среды организма и ее функции, Биология

Важный органоид ядра клетки — ядрышко — является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

См. также Клетка.

Источник: http://www.medical-enc.ru/28/yadro-kletki.shtml

Ядро клетки

Ядро — основной компонент клетки эукариот, состоящий из двухслойной ядерной мембраны, кареоплазмы, хроматина и ядрышек. В основном в составе клетки эукариот содержится одно ядро.

Но вместе с тем существуют как клетки, не имеющие ядра (эритроциты), так и клетки, имеющие несколько ядер (например, клетки, образующие ткань поперечно-полосатых мышц). Функции ядра заключаются в контроле за всеми процессами жизнедеятельности клеток за счет регуляции процессов синтеза различных белков.

Ядро осуществляет сохранение наследственной информации и передачу этой информации дочерним клеткам.

Кариоплазма — полужидкое гелеобразное вещество ядра, которое ограничено двойной ядерной мембраной и содержит в себе все остальные компоненты ядра. В состав кариоплазмы входят различные вещества — белки, нуклеотиды, нуклеиновые кислоты, вода, различные ионы.

Ядрышко — компонент ядра, располагающийся в его кариопазме и по своей структуре представляющий собой рибонуклеопротеид. Ядрышко прикреплено к одной из хромосом. Эта область хромосомы называется ядрышковым организатором.

Хроматин — компонент ядра эукариотической клетки. По химической природе хроматин представляет собой дезоксирибонуклеопротеид. В зависимости от особенностей стуктуры хроматина принято выделять эу- и гетерохроматин.

Эухроматин — активный в генетическом отношении хроматин. Он деконденсирован, имеет нитевидную структуру, при окрашивании определяется слабо. Гетерохроматин — неактивный в генетическом отношении хроматин. Он конденсирован, уплотнен, при окрашивании обнаруживается в виде глыбчатых структур.

Хромосомы — постоянные структурные компоненты ядра эукариот. За счет наличия хромосом осуществляются сохранение и реализация генетической информации. По строению хромосомы представляют собой комплекс из двуцепочечной ДНК и специфических белков. Генетически активны интерфазные хромосомы. Наиболее удобны для изучения метафазные хромосомы.

В составе метафазных хромосом выделяют две хроматиды, соединяющиеся друг с другом первичной перетяжкой, которую также называют центромерой. Центромера метафазных хромосом разделяет хроматиды на два плеча: короткое — p и длинное — q.

Концы хроматид называют теломерами. На коротких плечах некоторых хромосом располагаются спутники, отделенные с помощью вторичной перетяжки.

Метацентрические хромосомы — хромосомы, центромера которых располагается таким образом, что образуются примерно одинаковые по длине плечи.

Субметацентрические  хромосомы — хромосомы, центромера которых расположена таким образом, что образованные ею плечи неодинаковы по длине: одно из них короткое, другое — длинное. Акрометацентрические хромосомы имеют резко отличающиеся друг от друга по своей длине плечи.

Кариотип — совокупность характеристик о хромосомах данного вида организмов. В составе кариотипа имеются неполовые хромосомы — аутосомы и половые.

Гомологичные хромосомы — хромосомы, размер, форма, строение которых одинаковы. Хромосомы в ядре неполовой клетки парные, т. е. имеется диплоидный набор хромосом. Для половых клеток характерен гаплоидный набор хромосом, когда каждая хромосома в ядре имеется в единственном числе.

Источник: http://mybiologiya.net/obschie-svedeniya/yadro-kletki-stroenie

Ядро – это в биологии: что такое ядерная оболочка, какую функцию выполняет, как происходит деление и из чего состоит

Биология клеток живых организмов изучает прокариотов, не имеющих ядра (nucleus, core). Для каких организмов характерно наличие ядра? Нуклеус — это центральный органоид эукариотов.

Важно! Основной функцией клеточного ядра является хранение и передача наследственной информации.

Структура

Что такое ядро? Из каких частей состоит ядро? Нижеперечисленные компоненты входят в состав нуклеуса:

  • Ядерная оболочка;
  • Нуклеоплазма;
  • Кариоматрикс;
  • Хроматин;
  • Нуклеолы.

Ядерная оболочка

Кариолемма состоит из двух прослоек — наружной и внутренней, разделенных перинуклеарной полостью. Внешняя мембрана сообщается с шероховатыми эндоплазматическими канальцами.

Ко внутренней оболочке прикрепляются фибриллярные протеины основы ядерного вещества.

Между мембранами находится перинуклеарная полость, сформированная взаимным отталкиванием ионизированных органических молекул с аналогичными зарядами.

Кариолемма пронизана системой отверстий — пор, образованных белковыми молекулами. Через них рибосомы— структуры, в которых происходит синтез протеинов, а также оповестительные РНК проникают в цитоплазматическую сеть.

Межмембранные поры являются канальцами, заполненными водой. Их стенки сформированы специфическими белками — нуклеопоринами. Диаметр отверстия позволяет цитоплазме и содержимому ядра обмениваться мелкими молекулами.

Нуклеиновые кислоты, а также высокомолекулярные белки не способны самостоятельно перетекать из одной части клетки в другую.

Для этого существуют специальные транспортные протеины, активизация которых протекает с энергетическими затратами.

Высокомолекулярные соединения перемещаются через поры при помощи кариоферинов. Те, что транспортируют вещества из цитоплазмы в ядро, называются импортинами. Передвижение в обратном направлении осуществляют экспортины. В какой части ядра находится молекула РНК? Она путешествует по всей клетке.

Важно! Высокомолекулярные вещества не могут самостоятельно проникать через поры из ядра в клетку и обратно.

 Нуклеоплазма

Представлена кариоплазмой — гелеобразной массой, находящейся внутри двухслойной оболочки. В отличие от цитоплазмы, где ph >7, внутри ядра среда кислая. Основными веществами, которые входят в состав нуклеоплазмы являются нуклеотиды, белки, катионы, РНК, ДНК, H2O.

Кариоматрикс

Какие компоненты входят в основу ядра? Она сформирована фибриллярными белками трехмерной структуры — ламинами. Играет роль скелета, препятствуя деформации органоида при механических воздействиях.

Хроматин

Это главное вещество, представленное совокупностью хромосом, часть из которых находится в активированном состоянии. Остальные упакованы в уплотненные глыбки. Их раскрытие происходит во время деления.

В какой части ядра находится молекула, известная нам, как ДНК? Хромосомы состоят из генов, представляющих собой части молекулы ДНК. В них закреплена информация, передающая новым генерациям клеток наследственные признаки.

Следовательно, в этой части ядра находится молекула ДНК.

В биологии выделяют следующие типы хроматина:

  • Эухроматин. Представляется нитевидными, деспирализированными, неокрашиваемыми образованиями. Существует в покоящемся ядре в период интерфазы между циклами деления клетки.
  • Гетерохроматин. Не активизированные спирализованные, легко окрашивающиеся участки хромосом.

Нуклеолы

Ядрышко — наиболее уплотненная структура из входящих в состав нуклеуса. Оно обладает, преимущественно округлыми формами, однако, имеются сегментированные, как у лейкоцитов.

Ядро клетки некоторых организмов нуклеол не имеют. В других нуклеусах их может быть несколько.

Вещество ядрышек представлено гранулами, являющимися субъединицами рибосом, а также фибриллами, представляющими собой молекулы РНК.

Ядрышко: строение и функции

Нуклеолы представлены нижеперечисленными структурными типами:

  • Ретикулярный. Типичный для большинства клеток. Отличается высокой концентрацией уплотненных фибрилл и гранул.
  • Компактный. Характеризуется множественностью фибриллярных скоплений. Встречается в делящихся клетках.
  • Кольцеобразный. Характерен для лимфоцитов и соединительнотканных целл.
  • Остаточный. Преобладает в клетках, где процесс деления не происходит.
  • Обособленный. Все составляющие нуклеолы разделены, пластические действия невозможны.

Функции

Какую функцию выполняет ядро? Нуклеусу характерны следующие обязанности:

  • Хранение генетической информации;
  • Передача наследственных признаков;
  • Размножение;
  • Запрограммированная гибель.

Хранение генетической информации

Генетические коды хранятся в хромосомах. Они отличаются формой и размерами. Особи разного вида имеют неодинаковое количество хромосом. Комплекс признаков, характерный для хранилищ наследственной информации данного вида называют кариотипом.

Важно! Кариотип — это комплекс признаков, характерный для хромосомного состава организмов данного вида.

Различают гаплоидную, диплоидную, полиплоидную совокупность хромосом.

Клетки тела человека содержат 23 разновидности хромосом. В яйцеклетке и спермии содержится гаплоидный, то есть, одинарный их набор. При оплодотворении хранилища обоих клеток объединяются, образуя двойной — диплоидный комплект. Клеткам культурных растений присущ триплоидный или тетраплоидный кариотип.

Хранение генетической информации

Передача наследственных признаков

Какие процессы жизнедеятельности происходят в ядре? Генная кодировка передается в процессе считывания информации, результатом которой является образование матричной (информационной) РНК. Экспортины выводят рибонуклеиновую кислоту через нуклеарные поры в цитоплазму. Рибосомы используют генетические коды для синтеза необходимых организму белков.

Важно! Синтез белков происходит в цитоплазматических рибосомах на основании закодированной генетической информации, доставленной информационной РНК.

Размножение

Прокариоты размножаются просто. Бактерии обладают единственной молекулой ДНК. В процессе деления она копирует саму себя, прикрепляясь ко клеточной оболочке. Мембрана врастает между двумя соединениями и образуются два новых организма.

У эукариотов различают амитоз, митоз и мейоз:

  • Амитоз. Деление ядра происходит без дробления клетки. Образуются двухъядерные целлы. При следующем делении возможно возникновение полинуклеарных образований. Для каких организмов характерно такое размножение? Ему подвержены стареющие, нежизнеспособные, а также опухолевые клетки. В некоторых ситуациях амитотическое деление с образованием нормальных клеток происходит в роговице, печени, хрящевых текстурах, а также тканях некоторых растений.
  • Митоз. В этом случае деление ядра начинается его разрушением. Образуется веретено дробления, при помощи которого парные хромосомы разводятся по разным концам клетки. Происходит репликация носителей наследственности, после чего формируются два ядра. После этого веретено деления демонтируется, формируется ядерная оболочка, которая разделяет одну клетку на две.
  • Мейоз. Сложный процесс, при котором деление ядра происходит без удвоения разошедшихся хромосом. Характерен для образования половых клеток — гамет, имеющих гаплоидный набор носителей наследственности.

Запрограммированная гибель

Генетическая информация предусматривает продолжительность жизни клетки, и по истечении отведенного времени запускает процесс апоптоза (греч. — листопад). Хроматин конденсируется, ядерная мембрана разрушается. Целла распадается на фрагменты, ограничивающиеся плазматической оболочкой. Апоптотические тельца, минуя стадию воспаления, поглощаются макрофагами, либо соседними клетками.

Для наглядности строение ядра и функции, выполняемые его частями представлены таблицей

Элемент ядра Особенности строения Выполняемые функции
Оболочка Двухслойная мембрана Разграничение содержимого нуклеуса и цитоплазмы
Поры Отверстия в оболочке Экспорт — импорт РНК
Нуклеоплазма Гелеобразная консистенция Среда для биохимических превращений
Кариоматрикс Фибриллярные белки Поддержка структуры, защита от деформирования
Хроматин Эухроматин, гетерохроматин Хранение генетической информации
Нуклеола Фибриллы и гранулы Выработка рибосом

Внешний вид

Форма определяется конфигурацией мембраны. Отмечают нижеперечисленные виды ядер:

  • Круглая. Наиболее часто встречаемая. Например, большую часть лимфоцита занимает нуклеус.
  • Вытянутая. Подковообразное nucleus находят у несозревшего нейтрофила.
  • Сегментированная. В оболочке формируются перегородки. Образуются привязанные друг к другу сегменты, такие как у зрелого нейтрофила.
  • Разветвленная. Обнаруживается в ядрах клеток членистоногих.

Количество ядер

В зависимости от выполняемых функций, целлы могут обладать одним или несколькими ядрами либо не иметь их вообще. Различают следующие виды клеток:

  • Безъядерные. Форменные компоненты крови высших животных — эритроциты, тромбоциты являются переносчиками важных веществ. Чтобы освободить место для гемоглобина или фибриногена костный мозг вырабатывает эти элементы безъядерными. Они не способны делиться и по прохождении запрограммированного времени отмирают.
  • Одноядерные. Таково большинство клеток живых организмов.
  • Бинуклеарные. Печёночные гепатоциты выполняют двойную функцию — детоксикационную и производственную. Синтезируется гем, необходимый для выработки гемоглобина. Для этих целей необходимы два ядра.
  • Многоядерные. Миоциты мышц выполняют колоссальный объем работы, для ее выполнения необходимы дополнительные ядра. По этой же причине полинуклеарностью отличаются клетки покрытосеменных растений.

Хромосомные патологии

Многие болезни являются следствием нарушения связаны с нарушениями хромосомного состава. Наиболее известны нижеперечисленные симптомокомплексы:

  • Дауна. Вызван наличием лишней двадцать первой хромосомой (трисомия).
  • Эдвардса. Присутствует лишняя восемнадцатая хромосома.
  • Патау. Трисомия 13.
  • Тернера. Не достает хромосомы Х.
  • Клайнфелтера. Характеризуется лишними X либо Y-хромосомами.

Недуги, вызванные разладом в функционировании составных частей ядра не всегда связаны с хромосомными аномалиями. Мутации, которые влияют на отдельные белки ядра вызывают следующие заболевания:

  • Ламинопатия. Проявляется преждевременным старением.
  • Аутоиммунные заболевания. Красная волчанка — диффузное поражение соединительнотканных текстур, рассеянный склероз — разрушение миелиновых оболочек нервов.

Важно! Хромосомные аномалии приводят к тяжелым заболеваниям.

Строение ядра

Биология в картинках: Строение и функции ядра

Вывод

Клеточное ядро отличается сложным строением и выполняет жизненно важные функции.Оно является хранилищем и передатчиком наследственной информации, руководит синтезом белков и процессами деления клеток. Хромосомные аномалии являются причинами тяжелых заболеваний.

Источник: https://uchim.guru/biologiya/yadro-eto-v-biologii-svojstva-i-funktsii.html

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]