Энергетический обмен в клетке. синтез атф – биология

Искусственный и естественный отбор. Энергетический обмен клетки

Сохрани ссылку в одной из сетей:

5. Энергетический обмен клетки.

Энергетический обмен — совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет освобождаемой энергии. Основное значение энергетического обмена в том, что при разрушении сложных органических веществ высвобождается энергия, необходимая для реакций биосинтеза.

АТФ как единое и универсальное энергетическое вещество. Все проявления жизнедеятельности, все функции клетки осуществляются с затратой энергии. Энергия требуется для движения биосинтетических реакций, переноса веществ через клеточные мембраны, для любых форм клеточной активности.

Источником энергии в живых клетках, обеспечивающим все виды их деятельности, является аденозинтрифосфорная кислота (АТФ). Освобождающаяся при расщеплении АТФ энергия обеспечивает любые виды клеточных функций – движение, биосинтез, перенос веществ через мембраны и др.

Так как запас АТФ в клетке невелик, то понятно, что по мере убыли АТФ содержание ее должно восстанавливаться. В действительности так и происходит.

Биологический смыл остальных реакций энергетического обмена и состоит в том, что энергия, освобождающаяся в результате химических реакций окисления углеводов и других веществ, используется для синтеза АТФ, т. е. для восполнения ее запаса в клетке.

При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышцы работают почти исключительно за счет распада содержащейся в них АТФ.

После окончания бега спортсмен усиленно дышит, разогревается: в этот период происходит интенсивное окисление углеводов и других веществ для восполнения убыли израсходованной АТФ. При длительной и не очень напряженной работе содержание АТФ в клетках может существенно не изменяться, так как реакции окисления успевают обеспечить быстрое и полное восстановление израсходованной АТФ.

Синтез АТФ происходит главным образом в митохондриях и обеспечивается в основном энергией, выделяющейся при расщеплении глюкозы, но могут использоваться и другие простые органические соединения – сахара, жирные кислоты и пр.

Митохондрии способны использовать для синтеза АТФ не только расщепление глюкозы. В их матриксе содержатся также ферменты, расщепляющие жирные кислоты.

Особенностью этого цикла является большой энергетический выход – 51 молекула АТФ на каждую молекулу жирной кислоты. Не случайно медведи и другие животные, впадая в спячку, запасают именно жиры. Любопытно, что часть запасаемого жира имеет у них бурый цвет.

Такие жировые клетки содержат множество митохондрий необычного строения: их внутренние мембраны пронизаны порами. Ионы водорода свободно проходят через эти поры, и синтез АТФ в клетках бурого жира не происходит.

Вся энергия, освобождающаяся в процессе кислородного расщепления жирных кислот, выделяется в виде большого количества тепла, согревающего животных во время долгой зимней спячки.

Кроме глюкозы и жирных кислот, митохондрии способны расщеплять аминокислоты, но они – дорогое топливо. Аминокислоты являются важным строительным материалом, из них организм синтезирует свои белки.

К тому же использование аминокислот для синтеза АТФ требует предварительного удаления аминогруппы NН2 с образованием токсичного аммиака.

Белки и составляющие их аминокислоты используются клеткой для получения энергии только в крайнем случае.

Этапы энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на три последовательных этапа: подготовительный, бескислородный, кислородный. Рассмотрим их на примере животной клетки.

1) Подготовительный — расщепление в лизосомах полисахаридов до моносахаридов, жиров до глицерина и жирных кислот, белков до аминокислот, нуклеиновых кислот до нуклеотидов. Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при этом энергии рассеивается в виде тепла.

2) Бескислородный или неполный — вещества, образовавшиеся в подготовительном этапе – глюкоза, глицерин, органические кислоты, аминокислоты и др. – вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций.

Ферменты, обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее – на третий и т. д. Это обеспечивает быстрое и эффективное течение процесса.

Разберем его на примере бескислородного расщепления глюкозы, которое имеет специальное название – гликолиза. Гликолиз представляет собой ряд последовательных ферментативных реакций. Его обслуживает 13 различных ферментов, и в ходе его образуется более десятка промежуточных веществ.

Многие промежуточные реакции гликолиза идут с участием фосфорной кислоты Н3РО4. В нескольких реакциях участвует АДФ.

Не останавливаясь на деталях, укажем лишь, что на начальные ступени ферментного конвейера вступают шестиуглеродная глюкоза, Н3РО4 и АДФ, а с последних сходят трехуглеродная молочная кислота, АДФ и вода. Суммарное уравнение гликолиза должно быть записано так:

С6Н12О6+2Н3РО4+2АДФ =2С3Н6О3+2АТФ+2Н2О

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока, образовании простокваши, сметаны, кефира) вызывается молочнокислыми грибами и бактериями. По механизму оно вполне тождественно гликолизу.

У растительных клеток и у некоторых дрожжевых грибов распад глюкозы осуществляется путем спиртового брожения.

Спиртовое брожение, как и гликолиз, представляет длинный ряд ферментативных реакций, причем большая часть реакций гликолиза и спиртового брожения полностью совпадают, и только на самых последних этапах есть некоторые различия.

В ряде промежуточных реакций спиртового брожения, как и при гликолизе, принимают участие Н3РО4 и АДФ. Конечными продуктами спиртового брожения являются двуокись углерода, этиловый спирт, АТФ и вода. Суммарное уравнение спиртового брожения следует записать так:

С6Н12О6+2Н3РО4+2АДФ = 2СО2+2С2Н5ОН+2АТФ+2Н2О

Из приведенных уравнений гликолиза и спиртового брожения видно, что в этих процессах не участвует кислород, поэтому их называют бескислородными, или с неполным расщеплением, так как полное расщепление – это расщепление до конца, т. е. превращение глюкозы в простейшие соединения – СО2 и Н2О, что соответствует уравнению

С6Н12О6+6О2= 6СО2+6Н2О

Наконец, и это особенно важно, из уравнений следует, что при распаде одной молекулы глюкозы в ходе гликолиза и спиртового брожения образуются две молекулы АТФ. Следовательно, распад глюкозы в процессе гликолиза и спиртового брожения сопряжен с синтезом универсального энергетического вещества АТФ.

Так как синтез АТФ представляет эндотермический процесс, то, очевидно, энергия для синтеза АТФ черпается за счет энергии реакций бескислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе бескислородного расщепления грамм-молекулы глюкозы, освобождается 200 кдж (50 ккал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ и АТФ затрачивается 40 кдж (10 ккал).

В ходе бескислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2Х40=80 кдж (2Х10=20 ккал). Итак, из 200 кдж (50 ккал) только 80 кдж (20 ккал) сберегаются в виде АТФ, а 120 кдж (30 ккал) рассеиваются в виде тепла. Следовательно, в ходе бескислородного расщепления глюкозы 40% энергии сберегается клеткой.

3) Кислородный или полный (аэробное дыхание) — продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2О.

Основное условие осуществления этого процесса – наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия бескислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления – СО2 и Н2О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции бескислородного процесса, идут с освобождением энергии.

Количество энергии, освобождаемой на каждой ступени при кислородном процессе, много больше, чем на каждой ступени бескислрородного процесса. В сумме кислородное расщепление дает громадную величину – 2600 кдж (650 ккал).

Читайте также:  Память и мышление - биология

Если бы вся эта энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование реакций кислородного расщепления показало, что в этих реакциях, как и в реакциях бескислородного процесса, принимает участие Н3РО4 и АДФ и что кислородный процесс, как и бескислородный, сопряжен с синтезом АТФ. В ходе кислородного расщепления двух трехуглеродных молекул происходит образование 36 молекул АТФ – 36 богатых энергией фосфатных связей. Таким образом, суммарное уравнение кислородного процесса можно записать так:

2С3Н6О3+6О2+36Н3РО4+36АДФ = 6СО2+6Н2О+36АТФ+36Н2О,

а суммарное уравнение полного расщепления глюкозы так:

С6Н12О6+6О2+38Н3РО4+38АДФ =6СО2+6Н2О+38АТФ+38Н2О

Теперь должно быть ясно значение для клетки третьей, кислородной стадии энергетического обмена. Если в ходе бескислородного расщепления освобождается 200 кдж/моль (50 ккал/моль) глюкозы, то в стадии кислородного процесса освобождается 2600 кдж (650 ккал), т. е. в 13 раз больше.

Если в ходе бескислородного расщепления синтезируются две молекулы АТФ, то в кислородную стадию их образуется 36, т. е. в 18 раз больше.

Иными словами, в ходе расщепления глюкозы в клетке на стадии кислородного процесса освобождается и преобразуется в другие формы энергии свыше 90% энергии глюкозы.

Займемся снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2О, т. е. в ходе кислородного и бескислородного процессов, синтезируется 2+36=38 молекул АТФ. Таким образом, в потенциальную энергию АТФ переходит 38 Х 40=1520 кдж (38 Х 10 = 380 ккал).

Всего при расщеплении глюкозы (в бескислродную и кислородную стадии) освобождается 200+2600=2800 кдж (50+650 = 700 ккал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла.

Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12 – 15%. В двигателях внутреннего сгорания он достигает примерно 35%.

Таким образом, по эффективности преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

При сопоставлении количества энергии, освобождаемой в ходе бескислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, видно, что кислородный процесс несравненно более эффективен, чем бескислородный.

Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как бескислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только бескислородный процесс.

Но при этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы.

Заключение.

Сущность процесса, обозначаемого термином “отбор”, сводится к тому, что в ряду последовательных поколений животных или растений данного вида известные признаки постепенно усиливаются вследствие того, что в силу естественных условий (отбор естественный) или вследствие деятельности человека (отбор искусственный) размножаются исключительно или преимущественно те именно особи вида, у которых данные признаки развиты сильнее, между тем как особи, не представляющие этих особенностей, в силу тех или иных естественных или искусственных условий устраняются в большей или меньшей степени от размножения. Отбор искусственный в обширных размерах применяется в скотоводстве и птицеводстве и в руках опытных специалистов дает поразительные результаты. Механизм отбора может включиться лишь при наличии некоторого спектра вариаций (фактор изменчивости).

Естественный отбор является фактором преимущественно отрицательным: все то, что менее приспособлено к внешним условиям, гибнет, уступая место более приспособленным организмам.

Что же касается роли естественного отбора в создании тех первоначальных различий между особями, тех уклонений, которые, постепенно накопляясь и усиливаясь в процессе отбора, ведут к выработке новых разновидностей, видов, родов и т. д., то взгляды натуралистов на этот вопрос сильно расходятся.

По мнению одних, источником вариаций являются влияния внешних условий непосредственно или посредственно на организмы; это влияние вызывает изменения, которые и передаются по наследству, между тем как естественный отбор постоянно уничтожает все те формы, которые в том или ином отношении менее других пригодны для жизненной конкуренции; но при этом известные изменения внешних условий могут и сами по себе вести к появлению новых форм, действуя непосредственно на все особи (такого взгляда держался Ч. Дарвин). По мнению других (крайним представителем этого направления является А. Вейсман), изменения, вызванные внешними влияниями на данный организм, вовсе не передаются или передаются лишь в исключительных условиях по наследству; источником вариаций является, по этому взгляду, половое размножение, благодаря которому комбинируются признаки обоих родителей, а затем роль фактора, вырабатывающего новые формы, играет исключительно отбор. Еще один спорный вопрос, связанный с борьбою за существование и естественным отбором, заключается в том, в какой мере необходимо для происхождения новых разновидностей и видов изолирование измененных форм от неизмененных. По мнению одних, образование новых разновидностей и видов может происходить без всякого изолирования; действие естественного отбора обусловливает накопление ряда изменений в том или ином направлении, и путем вымирания форм менее специализированных получаются на место одной разные формы. По мнению других, изоляция, безусловно, необходима и известные изменения лишь в том случае имеют шансы накапливаться, суммироваться, если за возникновением изменений особи, представляющие их, будут изолированы от остальных, переселятся, мигрируют (миграционная теория М. Вагнера). Наконец, некоторые высказываются в том смысле, что изменение внешних условий вызывает те или иные изменения в организмах и действием отбора изменения эти суммируются и ведут к тому, что последовательные поколения все более и более удаляются от первоначальной формы, но в пределах их не происходит образования различных форм: медленно и непрерывно изменяется при таких условиях вся масса особей данного вида, но из одного вида не произойдет двух или более иначе, как в том случае, когда часть особей первоначальной формы будет так или иначе обособлена от остальной и поставлена в иные условия; в этом случае обе части особей данного вида (понятно, что их может быть и несколько) будут развиваться не в одном направлении и послужат источником образования разных видов из одного первоначального.

Во второй части реферата говорилось об энергетическом обмене клетки.

Энергетический обмен — совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет освобождаемой энергии. Значение энергетического обмена — снабжение клетки энергией, которая необходима для жизнедеятельности.

Этапы энергетического обмена: подготовительный, бескислородный, кислородный:

АТФ представляет единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие и заготовка энергии впрок. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время.

Список используемой литературы:

  1. Блиновская Ю.В., Давыдова А.И. Эволюция клетки. М., 1994

  2. Бохински Р. Современные воззрения в биохимии. М. 1987.

  3. Де Дюв К. Путешествие в мир клетки. М., 1987.

  4. Лемеза Н. А., Камлюк Л. В., Лисов Н. Д. Пособие по биологии для поступающих в ВУЗы. М.

  5. Маргелис Л. Роль симбиоза в эволюции клетки. М., 1983.

  6. Саламатова Т.С. Физиология растительной клетки. Л., 1983.

  7. Судиьна Е.Г., Лозовая Г.И. Основы эволюционной биохимии растений. Киев, 1982.

Источник: http://works.doklad.ru/view/YiXYmmt7IOY/3.html

Энергетический обмен в клетке. Синтез АТФ

Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена.

Читайте также:  Лишайники - биология

Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

У большинства живых организмов – аэробов, живущих в кислородной среде, – в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный.

У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

Первый этап – подготовительный – заключается в ферментативном расщеплении сложных органических соединении на более простые (белков на аминокислоты; полисахаридов на моносахариды; нуклеиновых кислот на нуклеотиды).

Внутриклеточное расщепление органических веществ происходит под действием гидролитических ферментов лизосом.

Высвобождающаяся при этом энергия рассеивается в виде теплоты, а образующиеся малые органические молекулы могут подвергнутся дальнейшему расщеплению и использоваться клеткой как «строительный материал» для синтеза собственных органических соединений.

Второй этап – неполное окисление – осуществляется непосредственно в цитоплазме клетки, в присутствии кислорода не нуждается и заключается в дальнейшем расщеплении органических субстратов. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное расщепление глюкозы, называют гликолизом.

Третий этап – полное окисление – протекает при обязательном участие кислорода. В его результате молекула глюкозы расщепляется до неорганического диоксида углерода, а высвободившаяся при этом энергия частично расходуется на синтез АТФ. Происходит в митох.

На этом этапе в процессе окисления важную роль играют ферменты, способные переносить электроны.Структуры, обеспечивающие прохождение третьего этапа, называют цепью переноса электронов.

В цепь переноса электронов поступают молекулы — носители энергии, которые получили энергетический заряд на втором этапе окисления глюкозы. Электроны от молекул — носителей энергии, как по ступеням, перемещаются по звеньям цепи с более высокого энергетического уровня на менее высокий.

Освобождающаяся энергия расходуется на зарядку молекул АТФ. Электроны молекул — носителей энергии, отдавшие энергию, соединяются в конечном итоге с кислородом. В результате этого образуется вода. В цепи переноса электронов кислород — конечный приемник электронов.

Основные типы дыхания.

Дыхание – это последовательность катаболических процессов, в результате которых восстановленные органические соединения переходят в окисленные формы с высвобождением высокоорганизованной энергии (например, с образованием АТФ или подобных веществ). Универсальным источником энергии при дыхании (субстратом дыхания) во всех клетках служит глюкоза. Процесс полного окисления глюкозы состоит из трех стадий: гликолиз, цикл Кребса, терминальное окисление.

Гликолиз – это процесс ферментативного негидролитического расщепления глюкозы.

Различают собственно гликолиз как тип анаэробного брожения и гликолиз как подготовительный этап аэробного дыхания. При собственно гликолизе (анаэробном брожении) пировиноградная кислота восстанавливается до молочной кислоты.

В ходе гликолиза как подготовительного этапа аэробного дыхания из одного моля глюкозы образуется два моля пировиноградной кислоты (ПВК), два моля АТФ и два моля НАД·Н+Н+.

Гликолиз – довольно сложный процесс, протекающий при участии 13 ферментов.

Брожение.Дальнейшие превращения ПВК в анаэробных (или частично аэробных) условиях называются брожением или анаэробным дыханием. В животных клетках (при дефиците кислорода) и в клетках молочнокислых бактерий протекает молочнокислое брожение: ПВК может забирать атомы водорода от НАД·Н+Н+ и превращаться в молочную кислоту – C3Н6О3.

Цикл Кребса– это последовательность биохим реакций с участием трикарбоновых кислот. Иначе цикл Кребса называют циклом лимонной кислоты, поскольку он начинается с образования этого вещества. У эукариот цикл Кребса протекает в митохондриях.

В ходе цикла Кребса пировиноградная кислота (ПВК) расщепляется до углекислого газа и атомов водорода, связанных с немембранными переносчиками НАД и ФАД.

При этом окисление двух молей ПВК приводит к образованию двух молей ГТФ (макроэргического соединения, сходного с АТФ по строению и содержанию энергии).

Аэробное дыхание (терминальное окисление, или окислительное фосфорилирование) – это совокупность катаболитических процессов на мембранах митохондрий, завершающихся полным окислением органических веществ с участием молекулярного кислорода. При этом роль протонного резервуара играет межмембранный матрикс – пространство между внешней и внутренней мембранами.

Из 38 молекул АТФ, образующихся при полном окислении одной молекулы глюкозы, 2 молекулы образуется в ходе анаэробных реакций гликолиза, 2 молекулы в цикле Кребса и 34 молекулы – при терминальном окислении.

Механизм синтеза АТР в комплексе F1-F0 до конца не выяснен. На этот счет имеется ряд гипотез. Одна из гипотез, объясняющих образование АТФ посредством так называемого прямого механизма, была предложена Митчеллом.

По этой схеме на первом этапе фосфорилирования фосфатный ион и AДФ связываются с F1- компонентом ферментного комплекса. Протоны перемены: через канал в Р0-компоненте и соединяются в фосфате с одним из атомов кислорода, который удаляется в виде молекулы воды.

Атом кислорода AДФ соединяется с атомом фосфора, образуя АТФ, после чего молекула АТФ отделяете фермента. Для косвенного механизма возможны различные варианты. Один из них: AДФ и неорганический фосфат присоединяются к активному центру фермента без притока свободной энергии.

Ионы Н + , перемещаясь по протонному каналу по градиенту своего электрохимического потенциала, связываются в определенных участках F1вызывая конформационные изменения фермента, в результате чего из и АДФ и Рi синтезируется АТФ.

Выход протонов в матрике сопровождается возвратом АТФ-синтетазного комплекса в исходное формационное состояние и освобождением АТФ. В энергизованном виде F1 функционирует как ATФ-синтаза.

При отсутствии сопряжения между электрохимическим потенциалом ионов Н+ и синтезом АТФ энергия, освобождающаяся в результате обратного транспорта ионов Н+ в матриксе, может превращаться в теплоту. Иногда это приносит пользу, так как повышение температуры в клетках активирует работу ферментов. Процесс синтеза АТФ идет с помощью специального макуромолекулярного комплекса, катализирующего синтез и гидролиз молекул АТФ в хлоропластах и митохондриях—АТФ-синтазы

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/b5285.html

Энергетический обмен в клетке . Синтез АТФ

· У большинства живых организмов – аэробов , живущих в кислородной среде , энергетический обмен осуществляется в три этапа : подготовительный, бескислородный и кислородный , в процессе которых органические вещества распадаются до неорганичесих соединений<\p>

· У анаэробов , обитающих в среде , лишённой кислорода , или у аэробов при его недостатке протекает лишь два первых этапа с образованием промежуточных органических соединений , ещё богатых энергией

Первый этап – подготовительный

· Заключается в ферментативном расщеплении сложных органических соединений (энергоносителей ) на более простые : белков – до аминокислот , жиров – до глицерина и жирных кислот , полисахаридов – до моносахаридов , нуклеиновых кислот – до нуклеотидов

· Расщепление органических субстратов пищи у многоклеточных животных происходит в желудочно-кишечном тракте ; у растений и одноклеточных – внутриклеточно в лизосомах под действием гидролитических ферментов

· Вся высвобождающаяся при этом ( около 5 кДЖ на моль ) рассеивается в виде тепла

· Образующиеся малые органические молекулы ( мономеры ) могут подвергаться дальнейшему расщеплению или использоваться клеткой как « строительный материал » для синтеза собственных органических соединений

Второй этап – бескислородный илигликолиз ( анаэробное дыхание)

· Заключается в дальнейшем расщеплении продуктов первого этапа ; главным источником энергии в клетке является глюкоза ( бескислородное , неполное расщепление глюкозы называют гликолизом )

Гликолиз – многоступенчатый ферментативный процесс превращения шестиуглеродной глюкозы в две трёхуглеродные молекулы пировиноградной кислоты ( пирувата , ПВК ) С3Н4 О3 , идущий с выделением энергии , достаточной для синтеза двух молекул АТФ в процессе субстратного фосфорилирования

Субстратное фосфорилирование – процесс образования АТФ , не связанный с мембранами

· В ходе реакций гликолиза выделяется 200 кДж моль энергии ; часть этой энергии ( 80 кДж – 40% ) используется на синтез 2 молекул АТФ , а часть ( 120 кДж – 60% ) рассеивается в виде тепла ( к. п. л. – 40% )

· Осуществляется в гиалоплазме клетки , не связан с мембранами и не нуждается в присутствии кислорода ( анаэробных условиях )

Читайте также:  Воздушное питание растений

· Процесс многоступенчатый ( 9 последовательных реакций ) , происходит под действием более 10 ферментов , образующих ферментативный конвейер и ряда вспомогательных веществ ( АДФ , Н3РО4 НАД+ )

q Многоступенчатость защищает клетку от одномоментного выделения большого количества энергии и , как следствие , тепловой смерти ( энергия выделяется небольшими порциями )

v Глюкоза в процессе гликолиза не только расщепляется на две 3-х углеродные молекулы ( триозы ) , но и окисляется , т. е. теряет электоны и 4 атома водорода ; акцептором ( Akz ) водорода и электронов служат молекулы кофермента НАД+ – специфического переносчика водорода , находящегося в митохондриях клеток в окисленной форме , или НАДФ + у растений

· В результате гликолиза каждой молекулы глюкозы образуется по две молекулы ПВК , АТФ и Н2О , а также атомы водорода , которые запасаются клеткой в составе специфического переносчика – НАД+

· Суммарная формула гликолиза имеет следующий вид :

С6Н12О6 + 2 АДФ + 2Н3РО4 + 2НАД+ = 2С3Н4О3 + 2 АТФ + 2Н2О + 2НАД Н

глюкоза пируват

· Дальнейшая судьба пирувата ( ПВК ) и водорода в форме НАД Н складывается по-разному

q В клетках растений и у дрожжей при недостатке кислорода происходит восстановление ПВК до этилового спирта ( этанола ) – спиртовое брожение

С3Н6О3 + 2НАД Н = С2Н5ОН + СО2 + Н2О + 2НАД+

пируват этанол

q В клетках животных и некоторых бактерий , испытывающих временный недостаток кислорода ( например в мышечных клетках человека при чрезмерной мышечной нагрузке ) происходит молочнокислое брожение , при котором пируват восстанавливается до молочной кислоты ( лактата )

С3Н4О3 + 2НАД Н = С3Н6 О3 + 2НАД+

пируват лактат

q Таким образом конечный продукт бескислородного процесса ( гликолиза ) в клетках животных – молочная кислота ( в растительных клетках чаще всего – ПВК )

q Брожение сопровождается выделением энергии , часть которой затрачивается на синтез 2 молекул АТФ , часть рассеивается в виде тепла

q Известны разные типы брожения : пропионовое , маслянокислое и др. , которые протекают при участии микроорганизмов , при этом образуются различные продукты – спирт , молочнокислые продукты , сыр , органические кислоты и т. д. ( некоторые бактерии , микроскопические грибы и простейшие живут исключительно за счёт энергии брожения )

q Брожение – анаэробный ферментативный процесс восстановления ПВК до молочной кислоты , этилового спирта или других веществ , сопровождающийся выделением энергии , часть которой затрачивается на образование 2 молекул АТФ, а часть рассеивается в виде тепла

v К брожению способны животные , растения и микроорганизмы ; брожение более эволюционно ранняя и энергетически менее эффективная форма получения энергии из питательных веществ по сравнению с кислородным окислением<\p>

· Суммарное уравнение окислительно-восстановительных реакций бескислородного этапа у животных выглядит так :

С6Н12О6 + 2 Н3РО4 + 2 АДФ = 2С3Н6О3 + 2АТФ + 2Н2О

· На втором этапе для анаэробных организмов энергетический обмен заканчивается , т. е. гликолиз является единственным процессом получения энергии

· При наличии в среде кислорода продукты гликолиза и брожения у аэробов претерпевают дальнейшее расщепление на третьем этапе до конечных продуктов обмена – СО2 и Н2О

· Этапы катаболизма углеводов можно представить в виде обобщённой схемы :

Полисахариды Пищеварительный тракт

( гидролиз ) I этап – подготовительный

Моносахариды

( гликолиз ) Гиалоплазма

Молочная кислота брожение ПВК брожение этанол II этап – бескислородный

( анаэробное дыхание )

Митохондрии

СО2 + Н2О III этап – кислородный

( аэробное дыхание )

Третий этап – кислородный процесс , аэробное дыхание , цикл Кребса

· Начинается с ПВК или лактата

· Протекает при обязательном участии кислорода

· Осуществляется в митохондриях и контролируется ферментами внутренней мембраны и матрикса митохондрий ( митохондрии – дыхательные центры клетки , поскольку кислород поглощённый при внешнем дыхании усваивается только в них )

· Представляет собой многоступенчатый процесс из 8 реакций циклического характера – цикл Кребса ( цикл трикарбоновых кислот )

vЦикл Кребса – циклическая последовательность ферментативных окислительных превращений три- и дикарбоновых кислот , осуществляющаяся в митохондриях

v Сущность цикла Кребса заключается в извлечении высокоэнергетичных электронов ПВКи передача их по дыхательной электронно-транспортной цепи внутренней мембраны митохондрий к конечному акцептору – О2, что приводит к окислительному фосфорилированию ( синтезу АТФ )

Дыхательная цепь ( электронно-транспортная цепь ) – последовательная цепь дыхательных ферментов – акцепторов (Acz ) , локализованных во внутренней мембране митохондрий и транспортирующих электроны и протоны к конечному акцептору – О2 ,что сопровождается окислительным фосфорилированием ( синтезом АТФ )

v Специфическими транспортёрами электронов и протонов являются молекулы НАД+ и ФАД+ , которые при их присоединении восстанавливаются до НАД Н2 и ФАД Н2 ; при окислении транспортёров выделяется энергия , которая тоже используется для синтеза АТФ

v Окислительное фосфорилирование в цикле Кребса идёт ступенчато с поочерёдным синтезом АТФ

v Цикл Кребса протекает в матриксе митохондрий в аэробных условиях ; ему предшествует образование ацетил – КоА ( ацетил кофермент А , ацетилкоэнзим А )<\p>

v Цикл начинается с образования лимонной кислоты и завершается образованием щавелево-уксусной кислоты ( для нового цикла )

v Обобщённо превращения , происходящие в цикле Кребса , можно представить следующим образом :

СО2 , Н2О

С3Н4О3 АТФ

пируват . Восстановленные коферменты НАД Н2 и ФАД Н2

v Цикл Кребса широко распространён в клетках животных и растений и является основным процессом обеспечения клетки энергией в аэробных условиях ; его продукты являются биохимическими предшественниками многих жизненно важных веществ ( углеводов , аминокислот , нуклеотидов , порфиринов и проч .)

Механизм аэробного дыхания

· Молочная кислота ( лактат ) подвергается гидролизу в матриксе митохондрий

С3Н6О3 + 3 Н2О = 3СО2 + 12Н

q СО2 ( диоксид углерода выделяется из митохондрий во внешнюю среду , а атомы водорода включается в цикл Кребса – электронно-транспортную дыхательную цепь , локализованную во внутренней мембране митохондрий и состоящую из коферментов – акцепторов ( Acz ) электронов и протонов – НАД+ и ФАД+

· Эти реакции идут в такой последовательности :

1. Атом водорода с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий , образующую кристы , где он окисляется

Н – электрон = Н+

2. Протон Н+ ( катион водорода ) выносится переносчиками в межмембранное пространство ; так как наружная и внутренняя мембраны митохондрий непроницаема для протонов , они накапливаются в межмембранном пространстве , образуя протонный резервуар

3. Электроны водорода переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы , образуя отрицательно зараженный активный анион кислорода

О2 + электрон = О2-

4. Катионы и анионы по обе стороны мембраны создают разноимённо заряженное электрическое поле ( электрохимический потенциал ) и , когда разность потенциалов достигнет 200 мВ , открываются протоннный канал ; он возникает в молекулах ферментов АТФ-синтетаз , которые встроены в о внутреннюю мембрану , образующую кристы

5.

Через протонный канал протоны водорода Н+ устремляются внутрь , в матрикс митохондрии , создавая высокий уровень кинетической энергии , большая часть которой идёт на синтез АТФ из АДФ и неорганических фосфатов ( Ф ) ( происходит окислительное фосфорилирование : АДФ + Ф = АТФ) а протоны Н+ взаимодействуют с конечным акцептором – активным анионом кислорода О2- , образуя воду и молекулярный О2 :

4Н+ + 2О2- = 2Н2О + О2

q Следовательно , АТФ синтезируется за счёт кинетической энергии протона , проходящего через АТФ-синтетазу ( специальный тоннельный белок , пронизывающий мембрану )

q Таким образом кислород , поступающий в митохондрии в процессе дыхания организма , необходим для присоединения протонов водорода Н+ ; при его отсутствии весь процесс в митохондриях прекращается , так как электронно-транспортная цепь перестаёт функционировать

· Общая реакция III этапа :

2С3Н6О3 + 6О2 + 36 АДФ +36Ф = 6СО2 + 36АТФ + 42Н2О

· В результате расщепления одного грамммоля глюкозы выделяется 1600 кДж энергии ; из них на синтез 36 молекул АТФ затрачивается 1440 кДж ( 55% ) , 1160 кДж ( 45% ) рассеивается в виде тепла

· В результате расщепления одного грамммоля глюкозы на всех этапах энергетического обмена образуются 38 молекул АТФ : на II этапе – 2АТФ и на III этапе – 36АТФ

q Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах в клетке и организме , где необходима энергия , а после расщепления в виде АДФ возвращается на этапы энергетического обмена

Источник: https://cyberpedia.su/16x15ab2.html

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]