Направления биотехнологии, Биология

Биотехнология — методы и приёмы получения полезных для человека продуктов с помощью живых организмов.

Биотехнологические процессы давно используются в производстве хлеба, молочнокислых продуктов, вина, пива.

Объекты биотехнологиимикроорганизмы (бактерии, цианобактерии, грибы, протисты). Их особенности: короткий жизненный цикл, интенсивное размножение, большое разнообразие биохимических свойств, лёгкое получение мутантов.

В селекции микроорганизмов используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток с заданными свойствами.

Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.

Микробиологический синтез — использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ.

С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики.

 

Клеточная инженерия — выращивание клеток вне организма на специальных питательных средах.

Клетки растут и размножаются, образуя культуру ткани.

Культура тканей — это фрагменты органов, тканей или клетки, выращиваемые вне организма.

Из растительных клеток можно вырастить целый организм. С помощью этого метода получают и размножают ценные сорта растений.

Направления биотехнологии, Биология

  • К методам клеточной инженерии относится  гибридизация (слияние) как половых, так и соматических клеток.
  • Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм.
  • Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды.
  • Получение гибридных клеток, совмещающих свойства лимфоцитов и раковых клеток, позволяет быстро получить антитела.

Генная инженерия — искусственная перестройка генома.

Пример:

введя в генотип кишечной палочки соответствующие гены человека, получают гормоны инсулин и соматотропин.

Направления биотехнологии, Биология

Организмы, в геном которых встроены гены других видов, называют трансгенными, или генетически модифицированными.

Направления биотехнологии, Биология

Направления биотехнологии – биология – Я Биолог

Направления биотехнологии, Биология

Сегодня перед биотехнологом стоит много нерешённых технологических задач. Можно изменять биологические организмы для обеспечения потребностей людей с помощью клеточных и генно-инженерных методов.

  • Например, улучшать качество продуктов, получать новые виды растений и модифицировать животных, придавать живым организмам необходимые свойства и создавать новые лекарственные препараты методами генной инженерии, искусственного отбора, гибридизации. 
  • Однако, чтобы работать биотехнологом, нужно знать не только генетику, молекулярную биологию, биохимию, клеточную биологию, но также ботанику, химию, математику, информационные технологии, физику и другое.
  • Грубо говоря, биотехнологи — это инженеры в области естественных и точных наук.
  • Генеральный директор инновационной биотехнологической Biocad Дмитрий Морозов рассказал об этой интересной профессии и будущем биотехнологий.

Biocad — это международная инновационная биотехнологическая компания. В ней есть научно-исследовательский центр, проводятся доклинические и клинические исследования собственных фармацевтических препаратов.

  1. Департамент перспективных исследований Biocad занимается разработкой лекарственных препаратов передовой генной и клеточной терапии, а, кроме того, поиском и анализом сигнальных путей, закономерностей и мишеней, которые позволяют разрабатывать препараты превентивной медицины.
  2. Дмитрий Морозов,
  3. генеральный директор компании Biocad

Что такое биотехнология?

Про стволовые клетки

Биотехнология — это использование живых систем, клеток, организмов для практических нужд человека. То есть использование современной науки для манипуляции с живыми объектами, чтобы получить некую выгоду и улучшить жизнь человека. 

Биотехнология отталкивается от потребностей. Например, не зря люди ездят на север и изучают гейзеры. Они понимают, что 10 лет могут искать и ничего не найти.

Но они всё равно это делают, потому что рано или поздно найдут какую-нибудь бактерию, которая позволит делать дешёвое биотопливо, используя один ген этой бактерии.

Так или иначе каждый человек, когда занимается наукой, надеется её применить (кроме теоретических физиков, хотя, наверное, они тоже захотели бы в космос полететь). В компании Biocad мы используем микроорганизмы для создания лекарств.

В биотехнологии много дисциплин, и все успешные проекты и направления связаны с их комбинацией.

Говорят, все открытия происходят на стыке разных специальностей: математика, биология — биоинформатика; биология, химия — биохимия; медицина, информатика, биология — биомедицинская информатика. Это всё отдельные блоки, которыми занимаются разные люди.

Биотехнология сегодня, наверное, более всего уделяет внимание созданию лекарств разных типов. Кроме фармацевтического направления биотехнологии интересно сельское хозяйство (улучшение свойств еды), экология, энергетика (получение биотоплива) и прочее.

И, конечно, в будущем можно думать о коррекции человека.

Генная инженерия и биотехнология

Молодые учёные: как изменить школу, чтобы дети любили учиться

В биотехнологии важное место занимает генная инженерия. Она широко распространена в исследованиях, однако вовсе не обязательно использовать её методы, чтобы получить полезные свойства у объекта.

Например, можно разобраться в особенностях метаболизма организма: как он живёт в нормальной среде обитания и что получится, если мы переведём его в другую среду обитания, с другими питательными факторами, в другую атмосферу — возможно, это поможет ему в итоге , и это может быстрее размножаться.

Но это же не генная инженерия.

Биотехнология — это манипуляции со знаниями, которые есть о данном объекте. Генная инженерия просто расширяет круг возможностей, разных комбинаций, даёт возможность совершать манипуляции на уровне молекул, поэтому более точна.

Биотехнология на самом деле существует столько, сколько сельское хозяйство. В сельском хозяйстве часто есть конкретная практическая цель — например, вывести породу быстрых лошадей или устойчивое к холоду растение. Этим люди занимаются уже сотни лет с помощью селекции, которая на самом деле является генетическим методом отбора.

Биотехнологическая этика: как общество относится к биотеху?

Люди по-разному воспринимают нововведения в биотехнологии. Есть негативные и позитивные примеры восприятия.

Негативные — это, например, мнение, что внедрение нового приведёт к появлению вирусов, которые будут распространяться по всему миру и от которых нет ни вакцины, ни лечения, и что периодические эпидемии именно с этим и связаны.

Из позитивных — например, можно создать вирус, который на время меняет цвет глаз. Постепенно они становятся своего цвета, и каплями антибиотиков можно снова сделать их голубыми. Это мало связано со здравоохранением в привычном смысле, но всё равно здорово.

Подобные манипуляции уже в теории можно делать, и к таким технологиям общество относится позитивно и с улыбкой. Однако в целом люди боятся внедрения новых технологий.

  • Да и чтобы внедрить новое, нужно на высшем уровне обсудить этические вопросы того или иного воздействия препарата, и обычно это происходит долго.
  • Фото предоставлено компанией Biocad.

Биотехнология в Biocad: лечение нуклеиновой кислотой

Два года назад в Biocad мы открыли Департамент перспективных исследований, основная цель которого — создание лекарственных продуктов передовой генной терапии. Этот термин объединяет три группы лекарственных препаратов, которые не похожи на все остальные лекарства, к которым мы привыкли. 

Во-первых, это препараты для генной терапии, во-вторых, это препараты, в основе которых лежит манипуляция с соматическими и стволовыми клетками человека, в-третьих, это препараты тканевой инженерии.

В основе действия классических лекарств лежит либо малая молекула химической природы, либо какой-то белок, например, антитело, который можно легко получить с помощью биотехнологических методов. В нашей разработке лекарственным веществом, то есть действующим фактором, является нуклеиновая кислота РНК или ДНК. 

Это новый способ воздействия на организм человека. Это направление не так давно стало бурно развиваться, поэтому к нему пока что относятся  с осторожностью.

Как работают препараты для генной терапии

Предупреждён и вооружён: генетическое тестирование в онкологии

Наше лекарство — это рекомбинантный вирус, наночастица на базе вируса, внутри которой находится ген, которого недостаёт больному человеку.

Направлены эти продукты, как правило, на заболевания, которые плохо поддаются лечению (наследственные заболевания с тяжёлыми проявлениями вплоть до летального исхода в раннем возрасте: дистрофия, нарушение зрения, световосприятия, иммунодефициты). Это в основном моногенные заболевания, в которых проявление болезни обусловлено дефектом одного гена.

В таких случаях они очень хорошо лечатся. В лаборатории мы создаем терапевтические вирусные частицы, а биоинформатики помогают нам моделировать их работу.

В случае полигенных заболеваний, например, рака, можно использовать методы генной терапии для модификаций клеток иммунной системы человека, чтобы получать иммунные клетки с высокой специфичностью к опухолевым клеткам. В лабораториях наши учёные осуществляют полный цикл разработки этих двух типов продуктов (от идеи до создания прототипов, готовых для тестирования на животных). Такого в России нет, наверное, нигде.

Перспективные исследования в биотехнологии

медицина будущего: Развитие новых типов лекарств

Наш департамент назван по аналогии с Управлением перспективных исследовательских проектов США (DARPA). Они пытаются внедрять достижения науки в целях увеличения обороноспособности страны — это ускоренная регенерация, универсальные доноры, оружие и прочее.

Возможно, в ближайшие 5-10 лет благодаря взаимосвязи кибернетики и биотехнологии действительно будут созданы умные лекарства.

Например, создание очень маленьких чипов: это капсула или робот с частицами лекарственного средства, циркулирующие в крови, из которых в зависимости от состояния человека нужное вещество будет впрыскиваться в кровь. Подобным занимаются, например, в MIT.

Уже есть успешные примеры: в зависимости от уровня глюкозы в организм вбрасывается инсулин, что минимизирует степень инвазивности лечебной процедуры. Человек один раз внедрил чип, сделал инъекцию и на очень длительное время забыл, что нужно принимать лекарство.

Даже известный футуролог Рэй Курцвелл говорит, что люди начнут жить дольше с помощью нанороботов к 2025 году. Скорее всего, он имеет ввиду препараты, которые будут бороться с онкологическими заболеваниями.

Читайте также:  Отряд приматы - биология

Нанороботы — новый формат препаратов, потому что с точки зрения веществ, из которых состоят лекарства, люди уже всё сделали. Мы ничего больше предложить не можем — типов химических соединений, которые можно использовать для терапии немного. Это либо белки, либо малые молекулы, либо нуклеиновые кислоты, которые теперь тоже применяются. 

Вариантов и тех, и других, и третьих, конечно, можно сделать безграничное количество, но они имеют ограниченный потенциал применения, так как работают по общим химическим принципам. По-другому воздействовать на клетку уже никак невозможно.

Поэтому в будущем главным вопросом будет доставка нанороботами этих трёх «блоков», что приведет к появлению новых форматов терапии. 

Конечно, большинство хочет просто принять таблетку, но не все лекарственные вещества можно в неё «вложить». Более простой вариант — капсула. Более эффективный — инъекция и суппозитории. И если был бы какой-то универсальный способ лечения, например, закалывать какой-то чип с концентратом лекарственного средства под кожу, но раз в год, думаю, многие бы на это пошли.

Фото предоставлено компанией Biocad.

Диагностика заболеваний

Развитие малоинвазивных методов диагностики будет нужно человеку, чтобы, грубо говоря, по капле крови можно было быстро определять состояние человека: есть ли у него онкологическое заболевание и, если да, то есть ли метастазы, что за рак и прочее. 

Сейчас это можно делать по определённому количеству миллилитров крови с помощью высокопроизводительных методов, но пока это довольно дорого. Мы идём к индивидуальному профилированию человека, чтобы знать про себя всё до уровня молекулы. Человек будет понимать, что конкретно с ним происходит в данный момент. 

Может возникнуть нечто вроде социальной сети профайлов, где будут храниться все данные — например, по экспрессии генов за последний месяц.

Кажется, что здесь всё легко, но на самом деле это миллиарды последовательностей, сотни генов с разными мутациями, разной степени значимости.

Поэтому нужен будет новый класс врачей-теоретиков, которые будут уметь интерпретировать это огромное количество данных.

Регенерация, искусственный интеллект

Панчин о заряженной воде, шлаках и теологии

Наверное, в будущем мы научимся регенерировать ткани и органы. Уже сейчас выращивают органы с нуля до реального размера из клетки благодаря 3D-печати. Также пытаются восстанавливать спинной мозг после травмы — печатать нейроны в месте повреждения. Иными словами, прививать человеку его же клетки, размноженные в лабораторных условиях.

  1. Также учёные будут больше использовать искусственный интеллект и нейросети, чтобы создавать новые лекарственные препараты.
  2. Самообучающийся ИИ должен будет сам накапливать достаточное количество знаний, которые позволят ему давать правильные ответы.
  3. Если это не контролировать, может, наверное, произойти катастрофа, но, с другой стороны, он сможет значительно развязать руки исследователям и дать возможность генерировать новые идеи, ведь ИИ будет брать на себя все рутинные процедуры.

3.9. Биотехнология, клеточная и генная инженерия, клонирование

— это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

Объекты биотехнологии: многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.}, растения, животные, а также изолированные из них клетки и субклеточные структуры (органеллы).

  Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главные направления биотехнологии:

1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок;

2)   применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней;

3)   создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.

Задачи, методы и достижения биотехнологии. 

Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе.

Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Генная (генетическая) инженерия —

  • раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов клетки.
  • Возникнув на стыке химии нуклеиновых кислот и генетики микроорганизмов, генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.
  • Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:
  • выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным синтезом нужных генов;
  • соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;
  • введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;
  • копирование (клонирование) этого гена в новом хозяине с обеспечением его работы.

Клонированные гены путем микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированные клетки, лишенные клеточной стенки) и из них выращивают целых животных или растения, в геном которых встроены (интегрированы) клонированные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных растений или трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов.

Трансгенные организмы свидетельствуют о больших возможностях генной инженерии как прикладной ветви молекулярной генетики (например, получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.).

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Клеточная инженерия

совокупность методов, используемых для конструирования новых клеток. Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов. 

В основе  клеточной инженерии  лежит использование методов культивирования изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях. Это стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки.

Условия регенерации разработаны для многих культурных растений — картофеля, пшеницы, ячменя, кукурузы, томатов и др.

Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии — соматической гибридизации, гаплоидии, клеточной селекции, преодоления нескрещиваемости в культуре и др.

Клонирование

метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных.

Однако сейчас термин “клонирование” обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях.

Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

Тематические задания

  1. А1. Производством лекарств, гормонов и других биологических веществ занимается такое направление, как
  2. 1) генная инженерия
  3. 2) биотехнологическое производство
  4. 3) сельскохозяйственная промышленность
  5. 4) агрономия

А2. В каком случае метод культуры тканей окажется наиболее полезным?

  • 1) при получении гибрида яблони и груши
  • 2) при выведении чистых линий гладкосемянного гороха
  • 3) при необходимости пересадить кожу человеку при ожоге
  • 4) при получении полиплоидных форм капусты и редьки
  • А3. Для того чтобы искусственно получать человеческий инсулин методами генной инженерии в промышленных масштабах, необходимо
  • 1) ввести ген, отвечающий за синтез инсулина в бактерии, которые начнут синтезировать человеческий инсулин
  • 2) ввести бактериальный инсулин в организм человека
  • 3) искусственно синтезировать инсулин в биохимической лаборатории
  • 4) выращивать культуру клеток поджелудочной железы человека, отвечающей за синтез инсулина.

Самая удобная и увлекательная подготовка к ЕГЭ

Селекция — отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Читайте также:  Искусственный отбор - биология

Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Основные методы селекции

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим.

Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора

Показатели Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существание Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой — ведёт к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды.

Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии.

Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация — скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы с ослом, лошак — гибрид коня с ослицей).

Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии.

Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия — увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды.

В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином.

Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика.

Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Биотехнология — методы и приёмы получения полезных для человека продуктов и явлений с помощью живых организмов (бактерий, дрожжей и др.). Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.

Микробиологический синтез — использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ. Благодаря селекции удалось вывести микроорганизмы, которые вырабатывают нужные человеку вещества в количествах, в десятки, сотни и тысячи раз превышающих потребности самих микроорганизмов.

С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики и т. д. Клеточная инженерия — выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани.

Из клеток животных нельзя вырастить организм, а из растительных клеток можно. Так получают и размножают ценные сорта растений. Клеточная инженерия позволяет проводить гибридизацию (слияние) как половых, так и соматических клеток. Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм.

Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды. Генная инженерия — искусственная перестройка генома. Позволяет встраивать в геном организма одного вида гены другого вида.

Так, введя в генотип кишечной палочки соответствующий ген человека, получают гормон инсулин. В настоящее время человечество вступило в эпоху конструирования генотипов клеток.

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.

Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья.

Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.

В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия. Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин.

На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны. Многие сорта культурных растений являются полиплоидными.

Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).

К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией). Почти все домашние животные относятся к высшим позвоночным животным — птицам и млекопитающим.

В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация. Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно.

В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного.

Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п.

Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье).

Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).

Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком.

Среди достижений по отдалённой гибридизации животных следует отметить мула — гибрида кобылы с ослом, бестера — гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Читайте также:  Основные закономерности наследственности, установленные Г. Менделем. Моногибридное и дигибридное скрещивания

Селекция микроорганизмов

К микроорганизмам относятся прокариоты — бактерии, сине-зелёные водоросли; эукариоты — грибы, микроскопические водоросли, простейшие. В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии.

Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др.

С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.

Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды.

Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений.

Это позволит избавиться от необходимости производить огромное количество азотных удобрений.

Биотехнология

Это использование биологических систем и процессов в сельском хозяйстве и промышленности. Изначально биотехнологией называли микробиологическое производство – промышленное культивирование бактерий и грибов для получения продуктов их жизнедеятельности (например, антибиотиков). Сейчас биотехнология включает в себя генную и клеточную инженерию.

Генная инженерия

Это перенос генов в клетки другого организма (получение трансгенных организмов). Техпроцесс: 1) Получение гена. Из клетки выделяют иРНК, затем получают из них ДНК путем обратной транскрипции. 2) Получение рекомбинантной плазмиды.

Плазмида – небольшая кольцевая молекула ДНК, характерная для прокариот. В неё вставляют ген, который необходимо перенести. 3) Перенос. Бактерии, например, сами поглощают ДНК из окружающей среды. В природе это является одним из механизмов изменчивости у бактерий. 4) Отбор.

Отбирают организмы, в которых пересаживаемый ген содержится и работает.

Примеры использования генной инженерии:

  • Инсулин получают из бактерии кишечной палочки с пересаженным человеческим геном инсулина.
  • В культурное растение пересаживают ген устойчивости к гербициду, при обработке поля гербицидом все сорняки погибают, а культурное растение – нет.
  • В культурное растение пересаживают ген яда, убивающего некоторые виды насекомых. Поле, засеянное этими растениями, не нужно обрабатывать инсектицидами.
  • В рапс пересажен ген устойчивости к засолению почвы из другого растения.

Клеточная инженерия

Это конструирование новых клеток (с новыми свойствами). Примеры: 1) Клонирование. Ядро соматической клетки животного пересаживают в яйцеклетку и выращивают новый организм, при этом полностью сохраняются все наследственные признаки донора ядра.

2) Соматическая (клеточная) гибридизация. Например, сливают две клетки – В-лимфоциты, вырабатывающие антитела, и раковые клетки, способные неограниченно делиться – получают гибридные клетки, выделяющие антитела. 3) Культура клеток (тканей).

Ткани и органы можно выращивать «в пробирке» на питательной среде. Например, гормон эритропоэтин получают из культур клеток хомяков. 4) Микроклональное размножение. У растений и грибов целый организм можно вырастить из одной или нескольких соматических клеток.

Так можно получить посадочный материал, не содержащий вирусов.

  • ПОДРОБНЫЕ КОНСПЕКТЫ: Генная инженерия-1, Генная инженерия-2
  • ЗАДАНИЯ ЧАСТИ 2 ЕГЭ ПО ЭТОЙ ТЕМЕ

Задания части 1

БИОТЕХНОЛОГИЯ 1. Выберите два верных ответа.

Методы биотехнологии позволяют
1) изучить превращение веществ в процессе жизнедеятельности организмов
2) получить растения с генетически изменёнными признаками
3) обнаружить изменения, возникшие в организме в результате онтогенеза
4) изучить микроскопические структуры клеток

5) изменить наследственность микроорганизмов путём клеточной инженерии

2. Ниже приведен перечень методов исследования. Все они, кроме двух, используются в биотехнологии. Найдите два метода, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
1) метод рекомбинантных плазмид
2) соматическая гибридизация
3) выращивание клеток и тканей на питательных средах
4) межвидовая гибридизация растений
5) испытание производителя по потомству
3. Все приведённые ниже характеристики, кроме двух, используют для описания методов биотехнологии. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) эксперименты с изолированными клетками
2) перенос генов от одного организма к другому
3) выращивание клеток и тканей на питательных средах
4) получение гетерозисных растений

5) испытание производителя по потомству

4. Выберите два верных результата из пяти и запишите цифры, под которыми они указаны. Вклад биотехнологии в медицину состоит в
1) использовании химического синтеза для получения лекарственных препаратов
2) создании лечебных сывороток на основе плазмы крови иммунизированных животных
3) синтезе гормонов человека в бактериальных клетках
4) изучении родословных человека для выявления наследственных заболеваний

5) культивировании штаммов бактерий и грибков для производства антибиотиков в промышленных масштабах

5. Все приведённые ниже методы, кроме двух, относят к методам биотехнологии. Определите два метода, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) создание генно-инженерных конструкций
2) изучение родословной породистых собак
3) проведение полимеразной цепной реакции
4) гибридизация клеток в культуре

  1. 5) оценка биоразнообразия экосистемы
  2. МИКРОБИОЛОГИЯ Выберите два верных ответа. Микробиологическое производство как область биотехнологии занимается 1) созданием генетически модифицированных растений 2) изучением клеток бактерий 3) получением антибиотиков и витаминов 4) систематикой вирусов
  3. 5) синтезом кормового белка
  4. ГЕННАЯ ИНЖЕНЕРИЯ Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генная инженерия, в отличие от клеточной, включает исследования, связанные с
    1) культивированием клеток высших организмов
    2) гибридизацией соматических клеток
    3) пересадкой генов
    4) пересадкой ядра из одной клетки в другую
  5. 5) получение рекомбинантных (модифицированных) молекул РНК и ДНК

Все приведенные ниже методы, кроме двух, относят к методам генной инженерии. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны. 1) разделение молекул ДНК электрофорезом 2) вставка гена в плазмиду 3) гибридизация клеток 4) разрезание плазмидной ДНК эндонуклеазами

5) конъюгация бактерий

Установите последовательность этапов получения штамма бактерий, содержащих ген животного, с использованием метода генной инженерии. Запишите в таблицу соответствующую последовательность цифр.

1) встраивание фрагмента ДНК в плазмиду 2) подбор животного, содержащего необходимый аллель 3) размножение прокариотической клетки с гибридной плазмидой 4) введение гибридной плазмиды в клетку бактерии

5) выделение нужного фрагмента ДНК из клетки животного

Установите последовательность этапов генноинженерного получения животного белка в бактериальных клетках. Запишите в таблицу соответствующую последовательность цифр. 1) встраивание фрагмента ДНК (гена) в плазмиду 2) разрушение клеточных мембран животных клеток, выделение молекул ДНК 3) синтез животного белка 4) разрезание молекул ДНК на отдельные фрагменты, выделение гена

5) внедрение плазмид со вставкой в бактериальную клетку

ГЕННАЯ – КЛЕТОЧНАЯ 1. Установите соответствие между достижениями и направлением биологии: 1) клеточная инженерия, 2) генная инженерия. Запишите цифры 1 и 2 в правильном порядке. А) КлонированиеБ) Получение вакцин в культуре клетокВ) Отдаленная гибридизация растенийГ) Трансгенные организмыД) Создание банков генов

Е) Получение безвирусного посадочного материала

2. Установите соответствие между характеристиками и методами биотехнологии: 1) генная инженерия, 2) клеточная инженерия. Запишите цифры 1 и 2 в порядке, соответствующем буквам. А) использование рекомбинантных плазмид Б) гибридизация протопластов В) трансплантация ядер Г) выращивание культуры клеток

Д) соматическая гибридизация

СОБИРАЕМ
1) изменение участка ДНК, кодирующего первичную структуру белка
2) микроклональное размножение растений

=====Все приведённые ниже характеристики, кроме двух, используют для описания генетически модифицированных организмов. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) содержат аминокислоты, не характерные для других организмов 2) могут иметь аллели и гены, не характерные для представителей данного вида 3) могут вызывать мутации при употреблении в пищу 4) используются в пищевой и фармакологической промышленности

5) имеют искусственно внедрённые изменения генома

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ 1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В клеточной инженерии используют следующие методы: 1) клонирование2) культура клеток и тканей3) микробиологический синтез4) пересадка природных генов в ДНК бактерий или грибов

5) центрифугирование

2. Все приведенные ниже термины и приёмы, кроме двух, используются для описания методов клеточной инженерии. Определите два термина или приема, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны. 1) гетерозис 2) трансплантация ядер клеток 3) межлинейная гибридизация 4) гибридизация соматических клеток

5) выращивание растений из каллусной ткани

3. Выберите два верных ответа. Какие приёмы используют в клеточной инженерии? 1) слияние соматических клеток 2) скрещивание организмов 3) пересадка хлоропластов из клетки в клетку 4) синтез гена инсулина в пробирке

5) получение рекомбинантной ДНК

4. Все приведённые ниже характеристики, кроме двух, используют для описания клеточной инженерии. Определите две характеристики, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны. 1) отбор родителей для скрещивания 2) гибридизация клеток 3) гетерозис у гибридных клеток 4) внедрение плазмиды в клетку эукариот

5) перенос ядра из соматической клетки в яйцеклетку

КУЛЬТУРА ТКАНИ Установите последовательность этапов размножения растений с помощью культуры ткани. Запишите соответствующую последовательность цифр. 1) деление выделенных клеток и получение клеточной массы 2) отделение клеток образовательной ткани растения и помещение их в питательную среду 3) пересадка молодого растения в грунт 4) дифференцировка тканей и органов

5) обработка клеточной массы фитогормонами для дифференцировки клеток

© Д.В.Поздняков, 2009-2020

Ссылка на основную публикацию